Some Properties of Quasi-normal operators

 K. Vidhyapraba¹, A. Sivasathya² and V. Vimala³
 ^{1,2,3}Department of Mathematics, Dr.N.G.P Arts and Science College, Coimbatore – 641048, Tamilnadu, India E-mail: <u>vidhyaprabamaths@gmail.com</u>. E-mail: <u>sivasathyamaths@gmail.com</u> E-mail: <u>vimalaida@gmail.com</u>

Abstract: In this article we will give some properties of quasi-normal operators in Hilbert spaces. The object of this paper is to study some properties of quasi-normal operators. If T_1 and T_2 are quasinormal operators, we shall obtain conditions under which their sum and product are quasinormal.

Keywords: Hilbert space, Quasinormal operators.

1. Introduction

Let us denote by H the complex Hilbert space and with B(H) the space of all bounded linear operators defined in Hilbert space H. Let T be an operator in B(H). The operator T is called quainormal if $T(T^*T) = (T^*T)T$. Let $T \in B(H)$, T = U+iV where $U = \text{Re } T = \frac{T+T^*}{2}$ and $V = \text{Im } T = \frac{T-T^*}{2i}$ are the real and imaginary parts of T. We shall write $B^2 = TT^*$ and $C^2 = T^*T$ where B and C are non-negative definite.

In this paper we will study some properties of quasinormal operators. Exactly we will give conditions under which an operator T is quasinormal. Also, we shall that of T_1 and T_2 are quasinormal operators, we shall obtain conditions under which their sum and product are quasinormal.

2. Quasi-normal operators

In this section we will show some properties of quasinormal operators in Hilbert space.

Theorem: 2.1

If $T \in B(H)$ is an invertible quasinormal operator, then 1. $T^{*}(T^{*}T) = (T^{*}T)T^{*}$, 2. T (T^*T) = (T^*T) T, 3. $T^{-1}(T^*T)$ = (T^*T) T^{-1} .

Theorem: 2.2

If T is quasinormal operator, then the equality $(T(T^*T))^n = T^n (T^*T)^n$ holds true for all $n \in N$.

Proof:

Observe that, $((T^*T) T)^2 = (T^*T) T (T^*T)T = T^2 (T^*T)^2$ $((T^*T) T)^3 = ((T^*T) T)^2 (T^*T) T$ $= T^2 (T^*T)^2 (T^*T) T$ $= T^3 (T^*T)^3$

By inductive argument it is obvious that, $((T^*T) T)^n = T^n (T^*T)^n.$

Theorem: 2.3

If T is an operator such that

(i) B commutes with U and V.

(ii)
$$TB^2 = (C^2T)$$
.

Then T is quasinormal operator.

Proof:

Since BU = UB, BV = VB we have $B^2U = UB^2$, $B^2V = VB^2$, then $B^2T + B^2T^* = TB^2 + T^*B^2$ $B^2T - B^2T^* = TB^2 - T^*B^2$. This gives, $B^2T = TB^2 = C^2T$ $= (T^*T)T$

$$T (T^*T) = (T^*T) T.$$

Hence T is quasinormal operator.

Theorem: 2.4

Let T be quasinormal operator and $TB^2 = (C^2T)$. Then B commutes with U and V. **Proof:**

Since $TB^2 = C^2T$, we have $T(TT^*) = (T^*T)T$. Hence, $(TT^*)T^* = T^*(T^*T)$. Since T is quasinormal operator, we have

$$B^{2}U = TT^{*} \frac{T + T^{*}}{2}$$

$$= \frac{T T^{*}T + T T^{*} T^{*}}{2}$$

$$= \frac{(T^{*}T)T + T^{*} (T^{*}T)}{2}$$

$$= \frac{T(TT^{*}) + (T^{*}T)T^{*}}{2}$$

$$= \frac{T^{2} T^{*} + T^{*}TT^{*}}{2}$$

$$= \frac{T + T^{*}}{2} TT^{*}$$

$$= UB^{2.}$$

Since B is non negative definite, it follows that BU = UB. Similarly, BV = VB.

Theorem: 2.5

If T is an operator such that $C^2U = UC^2$, $C^2V = VC^2$. Then T is quasinormal operator. **Proof:**

Since If T is an operator such that $C^2U = UC^2$, $C^2V = VC^2$

Then we have,

 $C^{2}(U + iV) = (U + iV)C^{2}$ and $C^{2}T = TC^{2}$, $(T^{*}T)T = T(T^{*}T)$.

Hence T is quasinormal operator.

Theorem: 2.6

Let T be quasinormal operator and $B^2T = (C^2T)$. Then

(i)
$$C^2 U = UC^2$$

(ii) $C^2 V = VC^2$

Proof:

(i) Since $B^2T = C^2T$ $\Rightarrow (TT^*)T = (T^*T)T$ $\Rightarrow T^*(TT^*) = T^*(T^*T)$

Since T is quasi normal operator, we have

$$C^2 U = T^* T \frac{T + T^*}{2}$$

$$= \frac{T^*T^2 + T^*TT^*}{2}$$
$$= \frac{TT^*T + T^{*2}T}{2}$$
$$= \frac{T + T^*}{2}T^*T$$
$$= UC^2$$
(ii) Similarly,
$$C^2 V = VC^2$$

Theorem: 2.7

Let T_1 and T_2 be two quinormal operators suchtaht $T_1T_2 = T_2 T_1 = T_1^*T_2 = T_2^* T_1 = 0$. Then their sum $T_1 + T_2$ is quasinormal operator. **Proof:** $(T_1 + T_2) [(T_1 + T_2)^*(T_1 + T_2)] = (T_1 + T_2) [(T_1^* + T_2^*)(T_1 + T_2)] = (T_1 + T_2) [(T_1^*T_1 + T_1^*T_2 + T_2^*T_1 + T_2^*T_2)] = (T_1 + T_2) [(T_1^*T_1 + T_2^*T_2)], since <math>T_1^*T_2 = T_2^*T_1 = 0$ $= T_1(T_1^*T_1) + T_1(T_2^*T_2) + T_2(T_1^*T_1) + T_2(T_2^*T_2)] = T_1(T_1^*T_1) + T_2(T_2^*T_2),$ since T_1, T_2 are Quasinormal

operators.
=
$$(T_1^*T_1)T_1 +$$

 $= [(T_1 +$

 $(T_2^*T_2)T_2$

T2 *T1+T2] (
$$T_1 + T_2$$
)
Hence $T_1 + T_2$ is quasinormal operator.

Theorem: 2.8

Let T_1 be quasinormal operator and T_2 quasinormal operator. Then their product $T_1 T_2$ is quasinormal operator if the following conditions are satisfied.

(i)
$$T_1 T_2 = T_2 T_1$$

(ii) $T_1 T_2^* = T_2^* T_1$

Proof:

 $(T_{1}T_{2}) [(T_{1}T_{2})^{*}(T_{1}T_{2})] = (T_{1}T_{2}) [(T_{2}^{*}T_{1}^{*})]$ $(T_{1}T_{2}) = (T_{1}T_{2}) (T_{1}^{*}T_{2}^{*}) (T_{1}T_{2}) = T_{1} (T_{2}T_{1}^{*})$ $(T_{2}^{*}T_{1}) T_{2} = T_{1} (T_{1}^{*}T_{2}) (T_{1}T_{2}^{*}) T_{2} = T_{1}T_{1}^{*} (T_{2}T_{1})$

 $(T_{2}^{*}T_{2}) = T_{1}T_{1}^{*} (T_{1}T_{2}) (T_{2}^{*}T_{2}) = (T_{1}^{*}T_{1}^{2})$ $(T_{2}^{*}T_{2}^{2}) = T_{1}^{*}T_{2}^{*} (T_{1}^{2}T_{2}^{2}) = (T_{1}^{*}T_{2}^{*})$ $(T_{1}T_{2})^{2} = (T_{2}^{*}T_{1}^{*}) (T_{1}T_{2})^{2} = (T_{1}T_{2})^{*}$ $(T_{1}T_{2})^{2} = [(T_{1}T_{2})^{*} (T_{1}T_{2})] (T_{1}T_{2})$ $(T_{1}T_{2}) [(T_{1}T_{2})^{*} (T_{1}T_{2})] = [(T_{1}T_{2})^{*} (T_{1}T_{2})]$ $(T_{1}T_{2})$

Hence $T_1 T_2$ is quasi normal operators.

References

Sh. Lohaj, Quasinormal operators, *Int. Journal of Math. Analysis*, 4 (47) (2010), 2311 – 2320.

[2] S. Panayappan and N. Sivamani, A- Quasi normal operators in semi Hilbertian spaces, *Gen. Math. Notes*, 10 (2) (2012), 30 – 35.

[3] valdete Rexh*ë*beqaj Hamiti, Some

properties of N – Quasinormal operators, *Gen. Math. Notes*, 10 (1) (2013), 94 – 98.