
International Journal of scientific research and management
(IJSRM) ||Volume 2 ||Issue 11||Pages|| 1736-1739 ||Nov 2014||
Website: www.ijsrm.in ISSN (e): 2321-3418

Anju Soosan Baby
1
, IJSRM volume 2 issue 11 November 2014 [www.ijsrm.in] Page 1736

Divergence Reduction In GPUs With SIMT

Architecture

Anju Soosan Baby
1
, Prof. Balachandran.K

 2

1 Dept. of Computer Science and Engineering,

Christ University Faculty of Engineering

 Bangalore, India
anju.baby@mtech.christuniversity.in

2 Dept. of Computer Science and Engineering,

Christ University Faculty of Engineering

 Bangalore, India
balachandran.k@christuniversity.in

Abstract: Branch Divergence has a significant impact on the performance of GPU programs. I used three Novel Software based

divergence reduction techniques namely Fixed Scheduling, Frequency scheduling, and Balanced scheduling that aims to reduce branch

divergence and comparing the execution time of each schedules. The calculation of End Semester Examination marks of Engineering and

MBA students is the application to which the scheduling techniques are applied. The divergence condition checked whether the student

belongs to Engineering Section or MBA section and based on that calculations further processing have been carried out. Evaluation shows

frequency scheduling and balanced scheduling exhibiting large improvement in execution time.

Keywords: Branch divergence, Optimization, Scheduling, SIMD, SIMT

1. Introduction

 Parallel Computing has massively become a Commodity

Technology. The main motivation behind massive Parallel

Programming is for applications to enjoy a continued increase

in speed. Parallel Programming targets the computationally

intensive code, it can be divided into small parts and then solve

concurrently. The fundamental design philosophies of CPU and

GPU are entirely different and this results in a performance gap

– CPUs are low latency low throughput Processors handling

task parallel problems optimized for sequential code execution

whereas GPUs are high latency high throughput Processors

solving data parallel problems.

 For Parallel Computations SIMD (Single Instruction Multiple

Data) is the suitable execution model containing multiple

processing elements receive same instruction but operate on

different data streams and supervised by the same control unit

[1]. GPU adopt SIMT (Single Instruction Multiple Thread)

architecture which extends SIMD. SIMD use one thread with

wide execution path, whereas SIMT split identical independent

work over multiple lockstep threads which means run same set

of operations at the same time in parallel [2]. Even though

GPU offers high speed, limited programmability is one of the

main drawbacks. Programma-

bility restricted in number of ways which include difficulty in

handling divergence such as loops and conditional clauses.

When a divergence occurs entire batch of threads will execute

both sides of branch sequentially, even though each thread

executes only one of the paths, So that divergence kills the

performance. In this study analysed and compared the

execution time of loop optimization techniques for divergence

reduction on GPUs which is likely to increase SIMD efficiency

To carry out this task an application of data processing of

students marks of two different streams has been chosen and

the performance evaluation based on the execution time for

each scheduling has been studied.

2. Related Works

 Since divergence degrades the performance of GPU, there are

several attempts to solve this problem which include

architectural proposals and software proposals. Majority of the

architectural proposals aiming to increase the number of

control units, effectively shifting SIMD to MIMD (Multiple

Instruction Multiple Data). Some of the efforts are:

 Exploit control flow locality among threads by extending

the sharing of resources in a blocks of warps. A common

block-wide stack is shared by warps within a block for

divergence handling. At a divergent branch, threads are

compacted into new warps in hardware [3].

 To improve processor utilization for global rendering

algorithms, introduce an SIMT architecture that allows for

threads to be created dynamically at runtime. Large

application kernels are broken down into smaller code

blocks called µ-kernels so that dynamically created threads

can execute. These runtime µ- kernels allow for the removal

of branching statements that would cause divergence within

a thread group, and result in new threads being created and

grouped with threads beginning the execution of the same

µ-kernel [4].

 Compaction-Adequacy Predictor (CAPRI). CAPRI

dynamically identifies the compaction-effectiveness of a

branch and only stalls threads that are predicted to benefit

from compaction [5].

 Iteration delaying: Executing loop iterations that take the

same branch direction and delaying those that take the other

direction until later iterations [6].

mailto:anju.baby@mtech.christuniversity.in
mailto:balachandran.k@christuniversity.in

Anju Soosan Baby, IJSRM volume 2 issue 11 November 2014 [www.ijsrm.in] Page 1737

 Branch distribution: reduces the length of divergent code by

factoring out structurily similar code from the branch paths

[6].

3. Background

3.1 GPU

 In the initial stages GPU has evolved to rendering graphics

only. As technology advanced number of cores associated with

GPU exploited thereby computational capability also

increased. GPU is a massively Parallel Architecture,

multithreaded (fine and lightweight threads) with thousands of

threads; hundreds of cores and have tremendous computational

horsepower and very high memory bandwidth.

Figure 1: Design philosophies of CPU and GPU

3.2 CUDA

 CUDA stands for Compute Unified Device Architecture

developed by NVIDIA Corporation. A CUDA program

consists of host code and device code: the phases that show

diminutive or no parallelism are carved in host part and that

have rich amount of parallelism are included in the device part.

3.2.1 Programming model

 When a kernel is invoked, it is executed as a grid of thread

blocks and it is to be noted that Parallel execution of kernel is

not possible, it is always sequential i.e. one kernel after the

other.

Figure 2: CUDA thread organization

At the top level, each grid comprises of thread blocks which is

organized as 2-dimensional (blockIdx.x and blockIdx.y) and all

the blocks must have the same number of threads structured in

the same manner. Threads are 3-dimensional identified by

threadIdx.x, threadIdx.y, threadIdx.z. Threads within a block

co-operate each other to accomplish the tasks. Blocks are

moved to the Streaming Multiprocessor(SM) for processing as

soon as there are enough resources in SM to take the block, for

example upto 8 blocks can be assigned to each SM in the

GT200 design. Each block is again divided into 32-thread units

called a warp which is the unit of thread scheduling. In a SM,

number of warps will be higher than number of SPs and it is

useful for latency hiding [7].

3.3 Branch Divergence

 In GPU, data processing is performing in SIMT fashion i.e.

all the threads in a warp execute the same instruction before

moving into the next instruction. When all the threads within a

warp follow the same path it works well. Suppose for an if-

then-else construct, the execution works well when either all

threads execute if part or all execute else part. When threads

within a warp take different paths i.e. some of the threads take

if part and others take else part, the SIMT execution style no

longer works well. In such situations the hardware makes all

these paths execute sequentially, even though each thread

executes only one of the paths and execution of the warp will

require multiple passes: one pass for those that choose if part

and another pass for those choose else part.

 Figure

3: Branch Divergence

4. The Optimizations

 For this used two scheduling techniques i.e. fixed scheduling

and dynamic scheduling have been used. Two variants of

dynamic scheduling are Frequency scheduling and balanced

scheduling [8]. Compared the execution time of these

schedules with native scheduling. The calculation of End

Semester Examination marks of Engineering and MBA

students is the application to which the scheduling techniques

are applied. The divergence condition checked whether the

student belongs to Engineering Section or MBA Section and

based on that calculations are happening.

First, created a database which contains 257000 records of the

students’ details such as name, register number, course, number

of subjects, mark of different subjects etc. Then copied these

details to a student record and passed to kernel function where

the actual computations are carried out.

4.1 Native scheduling

Anju Soosan Baby, IJSRM volume 2 issue 11 November 2014 [www.ijsrm.in] Page 1738

It is the conventional serialization; serialization of a branch

takes two consecutive time slots for SIMD units in a warp to

process iteration because SIMD units cannot execute different

tasks at the same time and one of the slots being always

idle.

 Algorithm:
 Bool path

 while condition1 do

 path = (bool)(course == 'Engineering')

 if path then

 Path A;

 else

 Path B;

 end while

4.2 Fixed scheduling

Assuming the simplified case of ‘n’ iterations, each with equal

processing demands in divergent branches for every thread in a

thread block, i.e., time spent processing path A is equal to time

spent processing path B subject to the branching condition [8].

Algorithm:

Bool path, next_path

next_path = 0

if condition1 then

 path = (bool)(course == 'Engineering')

 while condition1 do

 next_path = !next_path;

 if path == next_path then

 if path then

 Path A

 else

 Path B;

 if condition1 then

 path = (bool)(course == Engineering')

 end if

 end while

4.3 Frequency scheduling

 It is based on majority voting by selecting the most frequent

flow among the pending iterations [6]. In CUDA, __ballot () to

perform warp voting operations across all lanes (usually with

the size of 32) within a warp and should be supported by

graphic cards with compute capability of at least 2.0. __ballot()

is combining with __popc(), it can be used to accumulate the

number of threads in each warp having a true predicate and

returns the number of bits set with a 32-bit parameter[9].

Algorithm:

Bool path, next_path

int noA, noB

if condition1 then

 path = (bool)(course == 'Engineering')

 while condition1 do

 noA = __popc(__ballot(path == true))

 noB = __popc(__ballot(path == false))

 next_path = noA > noB

 if path == next_path then

 if path then

 Path A;

 else

 Path B;

 if condition1 then

 path = (bool)(course == 'Engineering')

 end if

 end while

4.4 Balanced scheduling

In frequency scheduling if a branch path occurs rarely, it takes

a substantial number of iterations to collect a majority vote,

resulting a prolonged vertical waste. Instead of a group-wide

vote over the next path, voting is performed only by threads

that lag most behind the rest of a group [8].

Algorithm:

Bool path, next_path

int noA, noB

int idle = 1, max = 1

if condition1 then

 path = (bool)(course == 'Engineering')

 while condition1 do

 noA = _popc(__ballot(idle==max && path == true))

 noB = _popc(__ballot(idle==max && path == false))

 next_path = noA > noB

 if (noA != 0 && noB != 0) then

 max++;

 if path == next_path then

 if path then

 Path A;

 else

 Path B;

 if condition1 then

 path = (bool)(course == 'Engineering')

 end if

 else

 idle++

 end while

 If statement mostly contains the same computation in both

branches, which is most probably, remove from the divergence

by the compiler optimization and count as overhead. Further,

iteration limit should be much higher than no.of blocks * no. of

threads that are using.

5. The Results and Discussions

Software implementation of the three iteration scheduling

disciplines on the NVIDIA GPU. Except for the simplest native

case, the reductions of the predicate expressions across the

threads are needed. They are achieved by the hardware

supported function, i.e. ballot() in CUDA C. Its 32-bit return

value consists of each thread’s predicate value in a bit

corresponding to the SIMD lane id [9]. By counting the number

of bits set to 1, each thread arrives at the same result. The

population count instruction popc() is used for that purpose,

which is also realized in hardware on this GPU. The GPUs

used were GeForce GT 540 M, based on the Fermi architecture

which consists of two streaming multiprocessors each with 48

CUDA cores.

Anju Soosan Baby, IJSRM volume 2 issue 11 November 2014 [www.ijsrm.in] Page 1739

Figure 4: Scheduling Vs Execution time

The above graph shows time taken by different schedules. The

performance will vary according to the branching probability

and branching frequency. If statement mostly contains the same

computation in both branches, which is most probably, remove

from the divergence by the compiler optimization and count as

overhead.

Fixed scheduling achieved negligible reduction in execution

time than native scheduling. For the given size and nature of

dataset, frequency scheduling and balanced scheduling

 accomplished the work with 48% and 44% reduction of

execution time respectively.

6. Conclusion

This paper has presented a performance analysis of repeated

divergence reduction technique by preserving the aids of

SIMD. The execution time depends on the adopted scheduling

technique and branching sequence. The more important

decision than choosing between the two dynamic scheduling

algorithms is the question of payoff threshold at which iteration

scheduling becomes rewarding. The time spent in each

divergent path, as well as the time spent in non-divergent parts

of a loop can be approximated reasonably well by the

instruction count at least in compute-bound kernels. On the

other hand, the expected number of iterations a SIMD is

concurrently processing a divergent path depends on the

selected algorithm and branching probabilities.

REFERENCES

[1] H. Kai and B. Faye A, Computer Architecture and

Parallel Processing, McGraw-Hill International Edition,

1985.

[2] B. W. Coon, J. R. Nickolls, J. E. Lindholm and S. D.

Tzvetkov, Structured Programming Control Flow in a

SIMD Architecture, Washington D.C: NVIDIA Corp,

2011.

[3] W. L. Fung and T. M. Aamodt, "Thread block

compaction for efficient SIMT control flow," in IEEE

Computer Society, Washington, DC, 2011.

[4] M. Steffen and J. Zambreno, "Improving SIMT

efficiency of global rendering algorithms with

architectural support for dynamic micro-kernels," in

IEEE/ACM Int’l Symp. Microarchitecture (MICRO ’10),

2010.

[5] M. Rhu and M. Ere, "CAPRI: Prediction of compaction-

adequacy for handling control-divergence in GPGPU

architectures," SIGARCH Comput. Archit. News, pp. 61-

71, June 2012.

[6] T. D. Han and T. S. Abdelrahman, "Reducing branch

divergence in GPU programs," in 4th Workshop General

Purpose Processing on Graphics Processing Units

(GPGPU ’11), 2011.

[7] B. K. David and W. H. Wen-mei, Programming

Massively Parallel Processors: A Hands-on Approach,

Morgan Kaufmann Publishers Inc, 2010.

[8] N. Roman, "Loop Optimization for Divergence

Reduction on GPUs with SIMT Architecture," in IEEE

Transaction Parallel and Distributed computing, 2014.

[9] NVIDIA Corp., "PTX: Parallel Thread Execution ISA

Version 2.3," Santa Clara, 2011.

Anju Soosan Baby received her BTech

degree in computer science from

Mahatma Gandhi Unive-rsity, Kerala

in 2012 and MTech from Christ Uni-

versity, Bangalore in 2015. Her rese-

arch inter-est is Parallel Computing.

K Balachandran, Associate Professor

of CSE, pursued his BSc and MCA

from Bharathidasan University, MSc

Physics from Annamalai University,

MTech (IT) from Allahabad Agri-

cultural University and MPhil from

Alagappa University. He has wo-

rked as a scientific officer for

two decades with the Department

Atomic Energy, India. Many of his research papers

have won the best paper award at national and

international conferences. His area of research includes

Computer Science and software engineering.

	PointTmp

