
International Journal of Scientific Research and Management (IJSRM)

||Volume||07||Issue||02||Pages||EC-2019-189-195||2019||

Website: www.ijsrm.in ISSN (e): 2321-3418

Index Copernicus value (2015): 57.47, (2016):93.67, DOI: 10.18535/ijsrm/v7i2.ec01

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-189

Rachel: An IoT smart plant based on FIWARE

Yolanda Raquel Baca Gómez
1
, Hugo Estrada Esquivel

1
, Alicia Martínez Rebollar

2
, Daniel Villanueva

Vásquez
1,3

1
National Council of Science and Technology,

1582, Insurgentes Sur Avenue, Benito Juárez 03940, México
2
National Center for Research and Technological Development,

Interior Internado Palmira, Cuernavaca 62490, México
3
Center of Research and Innovation in Information and Communication Technologies,

37, San Fernando Avenue, Tlalpan 14050, México

Abstract:

The Internet of Things (IoT) allows objects to become producers and users of information generated by

themselves, by people or by other systems and also facilitates automating applications. One of the IoT

topics is home automation, which allows monitoring and manipulating objects in a house. Because of the

growing of IoT, different platforms are emerging to face this technology, such as FIWARE, which

provides components and data models that facilitate the development of IoT applications. In this paper, a

smart plant prototype based on FIWARE is presented. The plant’s environment data is gathered through

different sensors, and is sent to a FIWARE component called Orion Context Broker (OCB) in a FIWARE

data model structure. The OCB allows to manage and publish the data, so that, the data is available in the

cloud ready to be consumed by other users or applications and to automate applications.

Keywords: IoT, FIWARE, data model, Cloudino

1. Introduction

The Internet of Things (IoT) refers to a broad vision

whereby “things” such as everyday objects, places

and environments are interconnected with one

another via the Internet [1]. In this sense, IoT is a

collection of things embedded with electronics,

software, sensors, and actuators, to collect and

exchange data with each other. The IoT devices are

equipped with sensors and processing power, which

enable them to be deployed in many environments

[2]. Additionally, it is expected that billions of

sensors, actuators and everyday objects could be

connected to the Internet, thus being able to report

about the conditions in their surroundings and act on

their environments. These interactions will mostly

happen without human intervention, paving the way

for smart objects and applications that are able to

measure, regulate and optimize their environments

or their own operation [3].

IoT provides connectivity for anyone and anything

wherever and whenever. With the advancement in

technology, we are moving towards a society, where

everything and everyone will be connected [4]. One

of the many applications of IoT is the home

automation, which allows to control and to monitor

lights, ventilator, gas leakage, motion detection,

watering garden and so on from a smartphone

anywhere. Therefore, an automated and quantified

system to take care of plants could be a very useful

tool [5].

Due to the growing awareness of IoT, IoT platforms

have been raised as well, such as FIWARE
1
 which is

an emerging IoT platform, funded by the European

Commission (EU), which is pushing for an

ecosystem providing APIs and open source

implementations for lightweight and simple means

to gather, publish, query and subscribe context-

based, real-time “things” information [6]. More than

100 European cities are already using FIWARE,

most of them for IoT and mobility solutions.

Moreover, one of the main advantages of FIWARE

is that they are programming-based approaches,

where solutions are generated starting from low

design levels [7].

In this paper, an IoT smart plant prototype based on

FIWARE is presented. The plant can sense its own

environment through some sensors. The generated

data is collected and processed by using Cloudino

and Arduino devices. Then, the data is sent to the

Orion Context Broker by using the

AirQualityObserved FIWARE data model. Finally,

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-190

the data can be used to automate some functions in

the environment’s plant and the data is available to

be consumed by other applications. This smart plant

prototype involves the entire cycle of the data, from

the development an IoT device to gather and process

the data until its publication in the Orion Context

Broker using a data model, where the data can be

consumed for different purposes. Finally, an

application to visualize the data is built.

2. Rachel IoT smart plant architecture

This paper presents a prototype of an IoT smart

plant based on FIWARE technologies, Cloudino and

Arduino devices to publish the data and automate

different actions. In Figure 1, the Rachel IoT

architecture is presented; which shows the

interaction between the components of the

prototype.

Figure 1: Rachel IoT smart plant architecture

The prototype consists of a plant called Rachel, with

some sensors on it; the sensors obtain data from the

environment; then, the gathered data is processed by

using Cloudino and Arduino devices and it is

transformed into a FIWARE data model. Finally, the

transformed data is sent to the Orion Context

Broker. Once the data is available in the Orion

Context Broker, it can be used to execute some

actions or it can be consumed by other users and

applications.

3. Methodology

In this section, the followed methodology for the

development of the Rachel IoT prototype is

described. The steps are shown in Figure 2, each is

briefly described in the following subsections.

Figure 2: Rachel IoT development methodology

3.1 Connection of the sensors and electronic

components

The sensors connected to obtain the data of the

plant’s environment and the electronic components

used in the prototype are listed below. In Figure 3 a

photograph of the prototype is shown.

 Soil Moisture sensor FC28. This component is

used to measure the humidity of the ground

where the plant is seeded. The sensor provides

values between 0 and 940, where 0 represents

total dryness and 940 represents the highest

value of humidity.

 Temperature sensor DHT11. This component

is used to measure the temperature of the

environment in Celsius degrees.

 Light sensor photoresistor. This component is

used to identify if there is light or not in the

environment. The sensor provides two values 1

and 0, where 1 represents light and 0 represents

no light.

 Infrared sensor. This component is used to

identify if there is an object in front of the plant.

The sensor provides two values 1 and 0, where

1 represents presence and 0 represents no

presence.

 Relative Humidity Sensor DHT11. This

component is used to measure the humidity of

the environment. This value is sent to the Orion

Context Broker and it is only shown in the LCD

Display.

 8x8 LED matrix with MAX7219. This

component is used to simulate emotions of the

plant.

 4 Channel 5V Relay Module. This component

is used to turn the electrical components on and

off.

 Display LCD 2x16. This component is used to

show the values of the sensors. Therefore, any

person who is nearby Rachel could see the

values of the sensors.

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-191

Figure 3: Rachel IoT prototype

3.2 Definition of the data model and creation of

the entity in the Orion Context Broker

FIWARE provides data models
2
 in order to facilitate

the exchange of data between applications. These

data models have been defined in relation to the

FIWARE reference context model: Open Mobile

Alliance Next Generation Service Interfaces (OMA-

NGSI).

The standard NGSI v2 of FIWARE is intended to

manage the entire lifecycle of context information,

including updates, queries, registrations, and

subscriptions. The main elements in the NGSI data

model are context entities, attributes and metadata,

as shown in Figure 2. The difference among these

elements is that attributes describe the entity and

metadata describe attributes [8], [9]:

Figure 4: Elements of the NGSI data model

Context entities, or simply entities, are the center of

gravity in the FIWARE NGSI information model.

An entity represents a thing, any physical or logical

object (e.g., a sensor, a person, a room, an issue in a

ticketing system, and so on). Each entity has an

entity id and entity type. Entity types are intended to

describe the type of thing represented by the entity.

Each entity is uniquely identified by the

combination of its id and type. Context attributes are

properties of context entities. In the NGSI data

model, attributes have an attribute name, an attribute

type, an attribute value and metadata.

2 https://github.com/Fiware/dataModels/blob/master/specs/howto.md

In the prototype data model design, an entity based

in the AirQualityObserved
3

FIWARE data model

and in the NGSI Specification has been created, with

the purpose to send the Rachel information to the

Orion Context Broker. In Figure 5, the Rachel entity

data model is presented.

Figure 5: Rachel IoT data model

The “id” field uniquely identifies the entity. The

“type” field establishes the data model, in this case

the AirQualityObserved data model. The “address”

field specifies the address in which Rachel is

located. The “dateObserved” field shows the date

and hour when the data is sent to the Orion Context

Broker. The “location” field specifies the

coordinates where Rachel is located. The “source”

field establishes the data source; in this case, the

data is obtained from the Racel IoT Application.

And, finally the “relativeHumidity”, “temperature”,

“soilMoisture”, “Light” and “Presence” fields show

the values of the sensors measurements.

3.3 Data processing with Cloudino and Arduino

The data is processed by using Cloudino and

Arduino. The necessary code for the functioning of

the prototype can be loaded in the Arduino through

the Cloudino’s interface in a remote way.

Additionally, Cloudino offers different functions

that facilitate the programming of Arduino and it

also provides WiFi connection to the prototype. So

that, the prototype is capable of constantly sending

the data to the Orion Context Broker. A guide called

“Creating your Air Quality Sensor with Cloudino
4
,

which is published as a part of the SmartSDK

project, has been taken as a reference for the

3 https://fiware-

datamodels.readthedocs.io/en/latest/Environment/AirQualityObserved/doc/spec/index.htm

l

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-192

development of the prototype. There are sections in

the code for different settings, such as set the

libraries required for each sensor, pines

configuration, variables, functions definition, and so

on. In Figure 6, an example of the code in the

Cloudino´s interface is presented. The function

presented is used to obtain the data from the sensors.

Figure 6: Example of the code in the Cloudino’s

interface

3.4 Data stored in the Orion Context Broker

The gathered data from the sensors through the

Cloudino and Arduino devices are sent to the Orion

Context Broker.

The Orion Context Broker is an implementation of

the NGSI REST API and is the key component of

FIWARE to enable the data context ingestion and

also to enable the subscription of applications to the

data context. The main concept of the Context

Broker is that data context producer can generate

information and place this in the cloud, without a

previous knowledge of the users or application that

will use the data. The Orion Context Broker is able

to handle context information in a large scale by

implementing standard REST APIs and allows

developers to manage the whole lifecycle of context

information including updates, queries, registrations

and subscriptions [8], [10], [11], [12].
There is a function in the Cloudino’s interface that

allows to transform the data in the format allowed

by the Orion Context Broker. In Figure 7, the

example of the code for the data transformation in

the AirQualityObserved data model is shown.

Figure 7: Function to transform the data in the

format allowed by the Orion Context Broker

The Cloudino’s interface provides a function to

automatically send the data to the Orion Context

Broker. There is a small form to be filled out in

order to start sending the gathered data by the

sensors to the Orion Context Broker. In Figure 8 an

example of the form is shown. It is necessary to

specify the name of the device, in this case Rachel

IoT prototype, the entity ID, the entity definition, the

URL of the Orion Context Broker. The Auth URL,

Auth User and Auth Password if needed, the Orion

Context Broker can be configured to require

authorization.

Figure 8: Function to send the data to the Orion

Context Broker

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-193

3.5 Prototype automation

The generated data by the Rachel IoT prototype is

available in the Orion Context Broker and can be

used to automate some functions, such as:

 Plant emotions. The LED Matrix is used to

show, as default, a happy face in the electronic

display. Then, a sad face is shown when the soil

moisture sensor has a value that represents dry

ground, and a heart beating is shown when the

infrared sensor has a value that represents the

presence of an object, in this case, we assume

that a person is getting close to Rachel. With

this component it is simulated that the plant can

express some emotions according to the

changes in its environment.

 Automatic irrigation system. If the soil

moisture sensor has a value that represents dry

ground, a sad face is shown in the LED Matrix.

There are two possible scenarios: in the first, the

irrigation system turns on until the value of the

sensor represents wet ground; in the second, the

irrigation system stays off in order to bring the

user the opportunity to interact with Rachel and

give her water. In both cases, when the sensor

represents wet ground, the happy face appears

in the LED Matrix.

 Turning on and turning off a ventilator.
When the value of temperature exceeds 25°C

the ventilator turns on, simulating that Rachel is

hot, and when the temperature is under 25°C the

ventilator turns off and remains off until the

temperature raises.

 Turning on and turning off a lamp. If there is

no light the lamp turns on, simulating that

Rachel needs light to grow. If there is light, the

lamp turns off and remains off until there is no

light.

 Reacting when someone is close. When an

object is detected in front of Rachel, it is

assumed that it is a person getting close to

Rachel, and the LED Matrix shows a heart

beating. When the person goes, a happy face

appears on the LED Matrix, and the happy face

remains until another event happens.

3.6 Data consumption by users and applications

The stored data in the Orion Context Broker can be

consumed through subscriptions. A subscription is a

POST method that allows applications getting

asynchronous notifications. This way, it is not

necessary to continuously repeat query requests; the

Orion Context Broker will send information when it

comes. Some data need to be specified in the

subscription: (1) the entity from we want to obtain

the information, (2) the data in the entity that must

change to trigger the subscription, (3) the data that is

going to be sent to an application or service, and (4)

the application or service which is going to receive

the data. In this case, a subscription that allows

sending the data from the Rachel entity to the

Rachel IoT Application has been created. The

elements of the Subscription to the Rachel entity are

shown in Figure 9.

Figure 9: Subscription to the Rachel entity

When the values of the sensor measurement change

in the Rachel entity registered in the Orion Context

Broker, the Rachel IoT Application will get an

asynchronous notification. This way, it is not

necessary to continuously repeat query requests.

The “entities” field specifies the entity from

which we need to receive notifications. The

“condition” field contains the attributes that must

change to send the notification. The “notification”

field specifies where the notification will be sent.

The “attrs” field specifies the values that will be

sent, could be one or more attributes of the entity.

The “expires” field specifies the date when the

subscription will stop working. Finally, the

“throttling” field specifies the minimal period of

time in seconds which must elapse between two

consecutive notifications.

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-194

4. Results and Discussion

The Internet of Things is an integral part of the

Internet of the Future along with other technological

trends like Big Data, Cloud Computing, Mobile

Computing and Augmented Reality. In addition,

these types of projects allow bringing to life to

objects and allow them to interact with their

environment in an autonomous way, without the

need of human help. The Rachel IoT application

allows to process information and modify its

environment, and to send data to the cloud in an

autonomously way by using sensors and the

FIWARE platform.

The FIWARE platform, brings tools to avoid the

constant execution of requests to obtain the changes

on the sensors measures. As soon as a value

changes, automatically, through the subscription to

the Orion Context Broker, Rachel sends the values

to the endpoint designed to receive the notifications.

In this case, the values are sent to the Rachel IoT

Application. In the application the values of the

sensors are shown. The light bulb icon shows the

current value: with yellow light on and with gray

light of. By clicking on the light bulb icon it is

possible to turn on or turn off the light. With the

start button it is possible to start the irrigation

system. In Figure 10 the Rachel IoT application is

shown.

Figure 10: Rachel IoT application

However, it is possible to build any kind of

applications in order to use or show the data.

Moreover, a generic data model is used, thus, it

facilitates to share and publish the data. Anyone can

use the published data in the Orion Context Broker,

and use it in their own applications.

5. Conclusions

The FIWARE platform offers data models and

services that simplify the handling of the data.

Therefore, it is possible to develop different kinds of

intelligent applications by using FIWARE, and, thus

share information in the cloud and automate

processes. In addition, using the FIWARE data

models facilitate the consumption of data by any

application and ensure interoperability between

different applications. The Rachel IoT smart plant is

an example of how the information from several

sensors can be shared by using FIWARE

technologies, and how the information can be used

in a specific application.

References

[1] T. L. Koreshoff, T. Robertson y T. Wah Leong,

«Internet of Things: a review of literature and

products» de Proceedings of the 25th Australian

Computer-Human Interaction Conference:

Augmentation, Application, Innovation,

Collaboration, 2013.

[2] Y. Yang, L. Wu, G. Yin, L. Li y H. Zhao, «A

Survey on Security and Privacy Issues in

Internet-of-Things» IEEE Internet of Things

Journal, vol. 4, nº 5, pp. 1250-1258, 2017.

[3] J. Gubbi, R. Buyya, S. Marusic y M.

Palaniswami, «Internet of Things (IoT): A

vision, architectural elements, and future

directions» Future generation computer

systems, vol. 29, nº 7, pp. 1645-1660, 2013.

[4] R. Khan, S. Ullah Khan, R. Zaheer y S. Khan,

«10th International Conference on Frontiers of

Information Technology» 2012.

[5] B. Sandhya, M. Pallavi y M. Chandrashekar,

«IoT Based Smart Home Garden Watering

System Using Raspberry Pi 3» International

Journal of Innovative Research in Science,

Engineering and Technology, vol. 6, nº 12, pp.

101-106, 2017.

[6] A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall

y B. Legeard, «Model-Based Testing as a

Service for IoT Platforms» de 7th International

symposium on leveraging applications of formal

methods, verification and validation, 2016.

[7] H. Estrada, K. Nájera, B. Vázquez, A. Martínez,

J. C. Téllez y J. J. Hierro, «Applying Tropos

modeling for Smart mobility applications based

on the FIWARE platform» de Proceedings of

the Ninth International i* Workshop, 2016.

[8] A. Martínez, F. Ramírez, H. Estrada y L. A.

Torres, «Generic module for collecting data in

Smart Cities» de 2nd International Conference

on Smart Data and Smart Cities, Puebla, 2017.

[9] FIWARE, «FIWARE-NGSI v2 Specification»

2018. Online]. Available:

http://fiware.github.io/specifications/ngsiv2/stab

le/. [Accessed: Feb. 20, 2018].

[10] FIWARE,

«FIWARE.OpenSpecification.Data.ContextBro

ker» [Online]. Available:

https://forge.fiware.org/plugins/mediawiki/wiki/

http://fiware.github.io/specifications/ngsiv2/stable/
http://fiware.github.io/specifications/ngsiv2/stable/

Yolanda Raquel Baca Gómez, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in] EC-2019-195

fiware/index.php/FIWARE.OpenSpecification.

Data.ContextBroker. [Accessed: Feb. 20, 2018].

[11] FIWARE, «Publish/Subscribe Context Broker -

Orion Context Broker» 2018. [Online].

Available: https://catalogue-

server.fiware.org/enablers/publishsubscribe-

context-broker-orion-context-broker.

[Accessed: Feb. 20, 2018].

[12] FIWARE, «Welcome to Orion Context Broker»

[Online]. Available: https://fiware-

orion.readthedocs.io/en/master/. [Accessed:

Feb. 20, 2018]

