
International Journal of Scientific Research and Management (IJSRM)  

||Volume||07||Issue||02||Pages||EC-2019-238-240||2019||  

Website: www.ijsrm.in ISSN (e): 2321-3418 

Index Copernicus value (2015): 57.47, (2016):93.67, DOI: 10.18535/ijsrm/v7i2.ec04 

 
 

Abdulqader S. Al-Najmi, IJSRM Volume 7 Issue 2 February 2019 [www.ijsrm.in]   EC-2019-238 

Pin-ended column buckling load is 2.73% lower than Euler’s 
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Abstract 
A verification calculation was aimed at further proving that the least critical load gives the Euler buckling 

load for a pin-ended column to be: 
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 . Selecting a parabolic function for this purpose, that meets 

the boundary conditions and is almost exactly similar to the symmetrical function sin(x). It was expected to 

obtain a critical load that is larger than the load given by the sine function. The parabolic function produced 

a lower critical load by about 3%. 
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Introduction: 

Figure 1 gives the neutral buckled shape of a pin 

ended compression member, free to rotate about 

frictionless pins at its ends. 
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Figure 1: Neutral buckled shape of a pin ended 

column displaced parabolically 

 When the axial load  is less than crP P , the 

compression member remains straight and 

undergoes only axial compression deformation. 

When the load is increased gradually, a condition 

of neutral equilibrium is reached. At this stage of 

loading, the column theoretically may have any 

infinitesimally small lateral deflection initiated by 

a very small lateral force, and upon removing this 

lateral force, the lateral deflected shape does not 

disappear. The buckled shape is possible only at a 

critical or Euler load, as prior to this load the 

column remains straight. The smallest load at 

which a buckled shape is possible is the critical 

load. The compression member will be at 

condition of neutral equilibrium that is described 

by the equation: 

 

 

 

by letting 
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The solution of the homogeneous second order 

linear differential equation that adheres to meet 

the boundary conditions is:              
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A comeback on the Analysis of pin ended 

column 

The solution of the homogeneous second order 

linear differential equation benefits from the use 

of the exponential function, which can be 

represented by trigonometric functions for the 

case of complex roots of the characteristic 

equation (auxiliary equation). The case of pin 

ended columns requires a symmetric function to 

observe the boundary conditions, hence the 

analysis is restricted to the trigonometric sine 

function:                       sinv A x  

From which the boundary condition: 
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 It can 

be seen 

that 

although 

the solution is founded on the exponential 

function and its equivalent form in terms of 

trigonometric functions, the boundary conditions 

forces the symmetrical shape on the solution in 

any case. A parabolic function fits these 

requirements, it is symmetrical, and its derivatives 

are symmetric. The use of such function does not 

mean that it shall bring about a smaller critical 

load, but it did. The suggested parabolic function 

produced a lower critical load by about 2.73%. 

Assume the deflected shape at the neutral 

equilibrium is a parabola of the second degree as 

shown in Figure 2. The bending moment diagram 

is the parabolic shape multiplied by crP , and the 

elastic weights are obtained by dividing the 

moments by EI. 
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Figure 2: Conjugate beam showing the elastic 

weights Considered in calculations 

Area of the parabola 
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weight of the bending moment diagram. 

Figure 2 shows the conjugate beam with the 

relevant elastic weights. 

Deflection at the middle of the span: 
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From which: 
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The other case that admits a similar solution is the 

fixed cantilever with an axial load as shown in 

Figure 3: 
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Figure 3: A Cantilevered column displayed at its 

neutral buckled shape 

 

In this case, the maximum moment will be crP  . 

From the properties of the parabolic shape of the 

bending moment diagram, the conjugate beam 

shown in Figure 4 is used to calculate the 

deflection at the tip.  
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Figure 4: Conjugate beam of the buckled column 

with elastic loads used calculations 

The elastic weight of the parabolic bending 

moment diagram 
2

3

crP L

EI


  

2

2 2

2 5

3 8

2.4 97.27
  

100 4

crP L
L

EI

EI EI

L L






 
 


   

 

In the Appendix, A general derivation is attached.  

Conclusions: 

1. The pin ended column buckles at a load 

smaller than Euler’s buckling load by 

2.73%. The same result applies to the 

cantilevered column. 

2. The other cases of Euler’s buckling loads 

for different boundary conditions, may not 

be immune from any reduction. 

Notation 

E = Modulus of elasticity in tension and 

compression 
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I = Moment of inertia of cross-sectional 

area 

L = Length of column 

M = Bending moment 

P = Axial force 

crP  = Euler buckling load 

r = Radius of gyration 

v = Transverse deflection of beam 

  = Maximum deflection of the neutrally 

buckled beam 

  = Eigen value in column buckling 

problems 
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Appendix Figure: Neutral parabolic displaced 

shape 

Parabolic equation  2y a Lx x    …   (1) 
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The bending moment at any section distanced x
is: 
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Dividing by EI  

 

Equation 3 can be written as follows: 
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differential equation. 
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