
International Journal of Scientific Research and Management (IJSRM)  

||Volume||12||Issue||04||Pages||479-483||2024||  

Website: https://ijsrm.net ISSN (e): 2321-3418 

DOI: 10.18535/ijsrm/v12i04.m01 

 

Shaymaa Shawkat Al-shakarchi, IJSRM Volume 12 Issue 04 April 2024                                M-2024-479 

Some theorems on the class M-A(n*) operators on Hilbert space 

Shaymaa Shawkat Al-shakarchi 

Department of Mathematics, Faculty of Basic Education 

University of Kufa, Najaf, Iraq 

 

Abstract:  

An operator 𝑇1  ∈  𝐵(𝐻) is referred to as  𝑀 − 𝐴(𝑛∗) operators if (𝑇1
∗|𝑇1|

2𝑛𝑇1)
1

𝑛+1 −𝑀|𝑇1
∗|2 ≥ 0 for a 

positive integer n. The well-known Fuglede–Putnam’s theorem states that the operator equation 𝑇1𝑋 =
 𝑋𝑇2 implies 𝑇1

∗𝑋 =  𝑋𝑇2
∗ when 𝑇1 and 𝑇2 are normal operators. This work demonstrates that if 𝑋 is a 

Hilbert-Schmidt operator,𝑇1  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑕𝑒 𝑐𝑙𝑎𝑠𝑠 𝑀 − 𝐴(𝑛∗) operators and 𝑇2
∗ is an invertible operator 

belonging to 𝑡𝑕𝑒 𝑐𝑙𝑎𝑠𝑠 𝑀 − 𝐴(𝑛∗) operators such that 𝑇1𝑋 =  𝑋𝑇2, then 𝑇1
∗𝑋 =  𝑋𝑇2

∗. 
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1- Introduction: 

Let 𝐻 denote a separable complex Hilbert space characterized by the inner product <∙,∙>. The space denoted 

as 𝐵(𝐻) represents the set of all bounded linear operators on 𝐻, whereas 𝐼 =  𝐼𝐻  represents the identity 

operator.  

An operator 𝑇 ∈  𝐵(𝐻) is said to be positive (denoted 𝑇 ≥  𝑂) if 〈𝑇 𝑥, 𝑥𝑖 〉 ≥  0 for all 𝑥 ∈  𝐻. The null 

operator and the identity on H will be denoted by 𝑂 and 𝐼, respectively. If 𝑇 is an operator, then 𝑇∗  is its 

adjoint, and ‖𝑇‖  =  ‖𝑇∗‖ . We shall denote the set of all complex numbers by ℂ, the set of all non-negative 

integers by ℕ and the complex conjugate of a complex number 𝜆 by �̅�. The closure of a set 𝑀 will be 

denoted by �̅� and we shall henceforth shorten 𝑇 −  𝜆𝐼 to 𝑇 −  𝜆. We write 𝜎(𝑇), 𝜎𝑝(𝑇) 𝑎𝑛𝑑 𝜎𝑎(𝑇) for the 

spectrum, point spectrum and approximate point spectrum, respectively. Sets of isolated points and 

accumulation points of 𝜎(𝑇) are denoted by 𝑖𝑠𝑜𝜎(𝑇) and 𝑎𝑐𝑐𝜎(𝑇), respectively. 

 

For an operator 𝑇, as usual, |𝑇|  =  (𝑇∗𝑇)
1

2  and ,𝑇∗ , 𝑇-  =  𝑇∗𝑇 −  𝑇 𝑇∗ (the self−commutator of T). In the 

following we will mention some known classes of operators defined in Hilbert space 𝐻. An operator 𝑇, is 

said to be normal, if ,𝑇∗ , 𝑇- = 0 , and 𝑇 is said to be a hyponormal, if ,𝑇∗ , 𝑇] is nonnegative, equivalently if 

|𝑇|2 ≥ |𝑇∗ | 2. An operator 𝑇 is a paranormal if ||𝑇2𝑥||  ≥  ||𝑇 𝑥||2 , [4], and it is 𝑀−paranormal if 

𝑀 ||𝑇2𝑥||  ≥  ||𝑇 𝑥||2 (see [3]) for every unit vector 𝑥 ∈  𝐻. In [5] authors, Furuta, Ito and Yamazaki 

introduced the A class of operators, respectively class 𝐴(𝑛) of operators defined as follows: for each 𝑛 >  0, 

an operator 𝑇 is a class 𝐴(𝑛) operator if 

 

(𝑇∗|𝑇|2𝑛𝑇)
1

𝑛+1 ≥ |𝑇|2, 
 

(for 𝑛 =  1 it defines the class 𝐴 operators) which includes the class of log-hyponormal operators (see 

Theorem 2, in [5]) and it is included in the class of paranormal operators, in case where 𝑛 =  1 (see Theorem 

1 in [5]). In the same paper the absolute-n-paranormal operators were introduced as follows: For each n > 0, 

an operator T is an absolute-𝑛-paranormal operator if  

‖|𝑇| 𝑛𝑇 𝑥‖  ≥  ‖𝑇 𝑥‖𝑛+1  , 
 

for every 𝑛 >  0. In case where 𝑛 =  1 it defines the class 𝐴∗ operators. Every class 𝐴∗ operator is a ∗-
paranormal operator, Theorem 1.3 in [4]. In paper [10] the absolute-n ∗ -paranormal class of operators was 

introduced as follows:  
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‖|𝑇| 𝑛𝑇 𝑥‖  ≥  ‖𝑇∗ 𝑥‖𝑛+1. 

 

For each 𝑛 >  0, every class 𝐴(𝑛∗) operator is an absolute-n ∗ - paranormal operator, Theorem 2.4 in [10]. 

 

Definition 1-1  

For each 𝑛 >  0,𝑀 >  0 an operator 𝑇 is a class 𝑀 −  𝐴(𝑛∗) operator if   (𝑇∗|𝑇|2𝑛𝑇)
1

𝑛+1 ≥ 𝑀 |𝑇∗|2. 

 

 Any an absolute-n ∗ − 𝑀-paranormal operator, if for each 𝑛 >  0,𝑀 >  0  ‖|𝑇| 𝑛𝑇 𝑥‖  ≥  𝑀‖𝑇∗ 𝑥‖𝑛+1 , for 

every unit vector 𝑥 ∈  𝐻 and every class 𝐴(𝑛∗) is an absolute-n ∗ − 𝑀-paranormal operator [10]. 

 

The primary objective of this work is to demonstrate that a-Browder's and Fuglede-Putnam theorems are 

applicable to 𝑀− 𝐴(𝑛∗) 𝑜𝑝𝑒 𝑎𝑡𝑜 .  

 

2. Browder’s theorem 

If there is a vector 𝑥  0 that satisfies (𝑇 − 𝜆)𝑥 =  0, then a complex number 𝜆 ∈   is said to be in the 

point spectrum 𝜎𝑝(𝑇) of the operator 𝑇. If 𝑇 ∈ 𝐵(𝐻), we may refer to the null space as  (𝑇) and the range 

as  (𝑇).  
The spectrum and the approximate point spectra of T are indicated as 𝜎(𝑇) and 𝜎𝑎(𝑇) respectively. The 

Fredholm operator 𝑇 is defined as follows:  (𝑇) is closed,  (𝑇)  =  𝑑𝑖   (𝑇)  <  , and  (𝑇)  =
 𝑑𝑖  𝐻  (𝑇) <  .  

Furthermore, if the 𝑖𝑛𝑑(𝑇) =  (𝑇) −  (𝑇)  =  0, then 𝑇 is known as the Weyl operator. The essential 

spectrum, denoted as 𝜎 (𝑇), and the Weyl spectrum, denoted as 𝜎 (𝑇), are theoretically defined as follows: 

 

     𝜎 (𝑇) = *𝜆 ∈    𝑇 − 𝜆 𝑖𝑠 𝑛𝑜𝑡   𝑒𝑑𝑕𝑜𝑙 +, 
and  

𝜎 (𝑇) = * 𝜆 ∈    𝑇 −  𝜆 𝑖𝑠 𝑛𝑜𝑡  𝑒 𝑙+  
 

An operator 𝑇 ∈ 𝐵(𝐻) has the finite ascent if  (𝑇 )  =   (𝑇 +1) for a positive integer  , and finite 

descent if  (𝑇𝑛)  =   (𝑇𝑛+1) for a positive integer 𝑛. If the operator 𝑇 is Fredholm of finite ascent and 

descent, it is referred to be Browder. The Browder spectrum of T may be expressed as: 

 

𝜎 (𝑇) = *𝜆 ∈    𝑇 − 𝜆  𝑖𝑠 𝑛𝑜𝑡 𝑎 𝐵 𝑜 𝑑𝑒  𝑐𝑜 𝑝𝑜𝑢𝑛𝑑+. 
 

The Browder's theorem applies to 𝑇 if  

𝜎 (𝑇) = 𝜎 (𝑇). 

 

The operator 𝑇 has the single valued extension property, which is known as SVEP. This property is defined 

as follows: if 𝑓( ) is an analytic vector valued function on an open set 𝐷    , such that (𝑇 −  𝜆)𝑓( )  =  0 

for all   ∈  𝐷, then 𝑓( )  =  0 for all   ∈ 𝐷.  

 

This section demonstrates that a-Browder’s theorem applies to the class 𝑀 − 𝐴(𝑛∗) operators. 

 

2.2 Theorem 

 Let 𝑇 ∈ 𝐵(𝐻) be an operator in the class 𝑀 − 𝐴(𝑛∗). If (𝑇 −  𝜆)𝑥 =  0, then (𝑇∗  −  �̅�) 𝑥 =  0 for all 

𝜆 ∈   .   

 

Proof: 

Since 〈𝑀|𝑇∗|2𝑥, 𝑥〉 ≤ 〈(𝑇∗|𝑇|2𝑛𝑇)
1

𝑛+1 𝑥, 𝑥〉=〈𝑇∗𝑇 𝑥, 𝑥〉 = |𝜆|2‖𝑥‖2  

Thus, ‖𝑇∗𝑥 − �̅�𝑥‖
2
= 〈𝑇∗𝑥 − �̅�𝑥, 𝑇∗𝑥 − �̅�𝑥〉 

                                  =〈𝑇∗𝑥, 𝑇∗𝑥〉 − 𝜆 ̅〈𝑥, 𝑇∗𝑥〉 − 𝜆 ̅〈𝑇∗𝑥, 𝑥〉 + |𝜆|2 
                                  =〈|𝑇∗|2𝑥, 𝑥〉 − 𝜆 ̅〈𝑇𝑥, 𝑥〉 − 𝜆 ̅〈𝑥, 𝑇𝑥〉 + |𝜆|2 
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                                   ≤ |𝜆|2 − |𝜆|2 − |𝜆|2 + |𝜆|2 = 0  
Hence, 𝑇∗𝑥 = �̅�𝑥  
 

Lemma 2.3 

If 𝑇 belongs to the class 𝑀 −𝐴(𝑛∗), then 𝑇 −  𝜆 has finite ascent for each 𝜆 ∈   .  

 

Proof: 

Since 𝑇 is a class 𝑀 − 𝐴(𝑛∗) operator, it follows that  (𝑇 − 𝜆)  ⊂   (𝑇∗ −  𝜆), for each 𝜆 ∈  𝐶 by 

Theorem 2.2. Therefore, it is possible to express  𝑇 −  𝜆 as the following 2𝑥2 operator matrix in relation to 

the decomposition  (𝑇 −  𝜆)  ⊕  (𝑇 −  𝜆)⊥:  

 

𝑇 −  𝜆 =  [
0 0
0 𝑇1

]  

 

Let 𝑥 ∈   ((𝑇 −  𝜆)2 ), and let’s write 𝑥 =  𝑎 +  𝑏, where 𝑎 ∈   (𝑇 −  𝜆) and 𝑏 ∈   (𝑇 −  𝜆)⊥  Then 

0 =  (𝑇 −  𝜆)2 𝑥 =  (𝑇 −  𝜆) 2 𝑏, so that (𝑇 −  𝜆)𝑏 ∈   (𝑇 −  𝜆)  ∩   (𝑇 −  𝜆)⊥  =  *0+, which implies 

that 𝑏 ∈   (𝑇 − 𝜆), and hence 𝑥 ∈   (𝑇 − 𝜆). Therefore  (𝑇 − 𝜆) =   (𝑇 −  𝜆)2   
 

Corollary 2.4  

If 𝑇 ∈  the class 𝑀 − 𝐴(𝑛∗) operator, then 𝑇 possess the property of SVEP. 

 

Proof: 

The Proof may be derived straight from Lemma 2.3 and Proposition 1.8 as presented in reference [8]. 

 

In this demonstration, we shall establish the validity of a-Browder's theorem for the class M-A(n*) operator. 

To do this, we require the subsequent definitions.  

Definition 2.5 

The Browder essential approximate point spectrum 𝜎𝑎 (𝑇) of T is defined by 

 

𝜎 𝑎(𝑇)  = ∩ *𝜎𝑎(𝑇 +  𝐾)   𝑇𝐾 =  𝐾𝑇, 𝐾 is a compact operator}. 

 

Definition 2.6 

We say that 𝑎-Browder’s theorem holds for T if 𝜎 𝑎(𝑇)  =  𝜎 𝑎(𝑇). It is well known that 𝑎-Browder’s 

theorem ⇒ Browder’s theorem.  

 

Theorem 2.7 

Let T ∈ B(H) be a class 𝑀− 𝐴(𝑛∗) operator. Then 𝑇 obeys 𝑎-Browder’s theorem. 

Proof: 

The SVEP of any operator in the class M-A(n*) operator implies that T satisfies a-Browder's theorem, as 

stated in Theorem 2.8 in reference [11].  

 

3- Fuglede-Putnam theorem 

The use of the Fuglede-Putnam theorem has significant importance within the realm of products, 

encompassing sums, which are composed of normal operators. An instance illustrating the use of this theory 

is the Kaplansky theorem [6]. Many scholars in the field of mathematics strive to further develop this 

theorem within the framework of nonnormal operators (see to [11]).  

This is the well-known Fuglede-Putnam theorem, as stated in reference [3]. 

 

Theorem 3-1 

Consider two operators 𝑇1and 𝑇2 be normal operator and 𝑋 be an operator such that 𝑇1𝑋 =  𝑋𝑇2, then 

𝑇1
∗𝑋 =  𝑋𝑇2

∗   
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Assume 𝑇 is an operator in the space 𝐵(𝐻) and *𝑒𝑖+ be an orthonormal basis for 𝐻  𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝑡he Hilbert-

Schmidt norm as  ‖𝑇‖2 = (∑ ‖𝑇𝑒𝑖‖
2∞

𝑖=1 )
1

2  This definition is independent of the choice of basis (see [2]). If 

‖𝑇‖2 <  , then 𝑇 is said to be a Hilbert-Schmidt  operator and we denote the Hilbert-Schmidt class by 

𝐶2(𝐻)  The set 𝐶2(𝐻) form an ideal of the algebra 𝐵(𝐻)   The ideal is a Hilbert space with an inner product 

〈𝑋1, 𝑋2〉 = ∑ 〈𝑋1𝑒𝑖, 𝑋2𝑒𝑖〉
∞
𝑖=1 = 𝑡 (𝑋2

∗𝑋1) = 𝑡 (𝑋1𝑋2
∗)  For each pair of operators 𝑇1, 𝑇2  ∈  𝐵(𝐻), there is 

an operator 𝛤𝑇1,𝑇2 defined on 𝐶2(𝐻) via the formula 𝛤𝑇1,𝑇2(𝑋) = 𝑇1𝑋𝑇2 in [3]. Obviously ‖𝛤‖  ≤

 ‖𝑇1‖  ‖𝑇2‖  . The adjoint of 𝛤 is obtained by the formula   𝛤 ∗𝑇1,𝑇2 𝑋 = 𝑇1
∗𝑋𝑇2

∗ , as stated in the reference 

[1].  

 

Theorem 2.1. If 𝑇 is an invertible 𝑀 − 𝐴(𝑛∗) operator for 𝑀 > 0, then 𝑇 1 is also be an absolute 𝑀−
𝐴(𝑛∗) operator. 

 

Proof: 

Given that (𝑇∗|𝑇|2𝑛𝑇)
1

𝑛+1 = (𝑇∗
(𝑛+1)𝑇(𝑛+1))

1

𝑛+1, it follows that (𝑇𝑇∗)(𝑛+1) ≤ (𝑇∗𝑇)(𝑛+1). 

(𝑇∗𝑇)
 (𝑛+1)
2

((𝑇∗𝑇)(𝑛+1) − (𝑇𝑇∗)(𝑛+1))(𝑇∗𝑇)
 (𝑛+1)
2 ≥ 0  

 

Thus, (𝑇∗𝑇)
 (𝑛+1)

2 (𝑇𝑇∗)(𝑛+1)(𝑇∗𝑇)
 (𝑛+1)

2 ≤ 𝐼 and (𝑇∗𝑇)
(𝑛+1)

2 (𝑇𝑇∗) (𝑛+1)(𝑇∗𝑇)
(𝑛+1)

2 ≥ 𝐼. 
 

(𝑇∗𝑇)
(𝑛+1)
2 ((𝑇𝑇∗) (𝑛+1) − (𝑇∗𝑇) (𝑛+1))(𝑇∗𝑇)

(𝑛+1)
2 ≥ 0  

 

This is equivalent to (𝑇𝑇∗) (𝑛+1) − (𝑇∗𝑇) (𝑛+1) = (𝑇 1
∗
𝑇 1)

(𝑛+1)
− (𝑇 1𝑇 1

∗
)
(𝑛+1)

 ≥ 0       
              

The class 𝑀 − 𝐴(𝑛∗) operator includes the operator  𝑇 1. 

  

Theorem 3-2 

If 𝑇1, 𝑇2and 𝑇2
∗ are 𝑀 − 𝐴(𝑛∗) operators, then the operator 𝛤𝑇1,𝑇2 belongs to 𝑀 − 𝐴(𝑛∗) operators’ class. 

 

Proof: 

Since  𝛤 ∗𝑇1,𝑇2 𝛤𝑇1,𝑇2𝑋 = 𝑇1
∗𝑇1𝑋𝑇2𝑇2

∗ and  𝛤𝑇1,𝑇2𝛤 ∗𝑇1,𝑇2 𝑋 = 𝑇1𝑇1
∗𝑋𝑇2

∗𝑇2 for any operator 𝑋 in 𝐶2(𝐻)  

We get |𝛤𝑇1,𝑇2|𝑋 = |𝑇1|𝑋|𝑇2
∗| and | 𝛤 ∗𝑇1,𝑇2|𝑋 = |𝑇1

∗|𝑋|𝑇2| 

As well as, |𝛤𝑇1,𝑇2|
2
𝑋 = |𝑇1|

2𝑋|𝑇2
∗|2and | 𝛤 ∗𝑇1,𝑇2|

2
𝑋 = |𝑇1

∗|2𝑋|𝑇2|
2  

We have |𝛤𝑇1,𝑇2|
2𝑛
𝑋 = |𝑇1|

2𝑛𝑋|𝑇2
∗|2𝑛 and | 𝛤 ∗𝑇1,𝑇2|

2𝑛
𝑋 = |𝑇1

∗|2𝑛𝑋|𝑇2|
2𝑛 for each 𝑛 > 0  

Thus, . 𝛤 ∗𝑇1,𝑇2 |𝛤𝑇1,𝑇2|
2𝑛
𝛤𝑇1,𝑇2/𝑋 = (𝑇1

∗|𝑇1|
2𝑛𝑇1)𝑋(𝑇2

∗|𝑇2
∗|2𝑛𝑇2) 

                                                      ≥ (|𝑇1
∗|2)𝑛+1𝑋 (|𝑇2|

2)𝑛+1 

                                                       = .| 𝛤 ∗𝑇1,𝑇2|
2
/
𝑛+1

𝑋  

 

Theorem 3-3 

Let  𝑇1and 𝑇2 be  𝑀− 𝐴(𝑛∗)  operator such that 𝑇2
∗ is invertible operator in the class of 𝑀 −

𝐴(𝑛∗) operators, and let 𝑋 be a Hilbert-Schmidt operator. If 𝑇1𝑋 = 𝑋𝑇2, then 𝑇1
∗𝑋 = 𝑋𝑇2

∗  
 

Proof: 

Let 𝛤𝑇1,𝑇2 be the Hilbert-Schmidt operator defined by 𝛤𝑇1,𝑇2𝑋 = 𝑇1𝑋(𝑇2)
 1  

Since 𝑇1, 𝑇2 are in the class 𝑀 − 𝐴(𝑛∗) operators, by Theorem 3-2, 𝛤𝑇1,𝑇2is 𝑀 − 𝐴(𝑛
∗) operator. The 

hypothesis 𝑇1𝑋 = 𝑋𝑇2, implies that 𝑇1𝑋(𝑇2
∗) 1 = 𝑋   

And 𝛤𝑇1,𝑇2 X = X  , 𝛤 ∗𝑇1,𝑇2 𝑋 = 𝑋 by Theorem. 

Hence, we have 𝑇1
∗𝑋(𝑇2

 1)
∗
= 𝑋  Therefore, 𝑇1

∗𝑋 = 𝑋𝑇2
∗  
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4-Conclusion 

In this paper, we have considered the class of operators 𝑀 − 𝐴(𝑛∗). We have presented some properties of 

these operators. We also proved that a-Browder's theorem and the Fuglede-Putnam theorem hold for it. 
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