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Abstract 

In the software development process, ensuring the quality of the software is essential. Software defect 

prediction (SDP) is of significant importance in identifying software modules with a high likelihood of 

defects. Several machine learning-based defect prediction models have been developed and implemented 

in recent years. Researchers have also utilized network embedding for SDP, showcasing the adaptability 

of Natural Language Processing techniques within the domain of defect prediction. This study aims to 

review, investigate, and discuss network embedding's use in SDP. We examined the previous 15 years' 

defect prediction articles using network embedding, the majority of which were published in notable 

conferences and software engineering journals. Each network embedding technique, its findings, and its 

particular roles in SDP have been described in detail. The papers that have been reviewed are listed in the 

order of publication along with their comparative assessment. We have developed three research questions 

that emphasize the significance of analyzing network representations, particularly network embedding, for 

identifying potential software defects. According to our knowledge, this review is the first to include a 

thorough analysis of both the transductive and inductive variants of network embedding, along with their 

potential in machine learning (ML) for predicting software defects. This article extensively explores the 

challenges and puts forth potential research directions as solutions, intending to effectively guide future 

research efforts for academics and practitioners in the field of SDP. 

 

Keywords: Software Defect Prediction, Network Embedding, Machine Learning,  Software Dependency 

Network, Graph Neural Network, Network Analysis 

 

1 Introduction 

Software testing is a pivotal aspect of the software development life cycle as it is an essential safety measure 

before the release of software in the market. Before any software is released after development or 

maintenance fixes, it must be tested for possible defects. To examine every source code file, however, would 

be impractical due to both time and resource constraints. By employing software defect prediction models, it 

becomes possible to predict the modules that are more likely to have defects, thus helping the software 

testing teams to focus on modules having a substantial tendency for defects and giving testers valuable 

guidance (Alharthi et al., 2021; Hossain and Chen, 2022). The recent SDP models mainly constitute the 

defect data set and machine learning algorithms. The defect data set comprises software defect metrics 

generated from previous projects stored in repositories and fed into machine learning binary classifier 

algorithms that predict defect-prone software modules. Although numerous techniques have been created to 

predict defects, it has proven a challenge to consistently produce reliable results for increasingly complex 

software being developed currently. Determining a reliable, accurate, cost- and time-effective method to 

identify defect-prone modules is thus still an ongoing challenge in software engineering. 

    Static code metrics provide estimations of software characteristics related to defect propensity and, 

consequently, to the level of quality. Size is one such feature that is frequently measured using LOC counts, 

and readability is measured using operand and operator counts. This category of static metrics is defined as 

Halstead metrics (Halstead, 1977). Metrics for measuring the complexity of code are provided by McCabe 

feature metrics (McCabe, 1976). With the development of object-oriented software, CK metrics were 
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developed (Jureczko and Spinellis, 2010). MOOD feature metrics (Harrison et al., 1998) have also proved to 

be useful in capturing object-oriented features of the software. 

    Networks serve as a common representational form for complex systems, encompassing social 

interactions, relationships among various biological components, and informational networks. It is widely 

acknowledged that network information is inherently complex and challenging to manage. Overcoming the 

first critical hurdle in network information processing involves finding an efficient representation method 

that enables proficient execution of advanced analytical tasks such as pattern discovery, analysis, and 

prediction. Taking advantage of class dependency networks for SDP signifies an important development in 

software engineering field. Dependency networks correspond to software modules as nodes, and interactions 

between each module are expressed as edges. These Software networks are then analyzed to obtain network 

metrics, which use the interdependence relationship between individual code modules to define the 

network's structural properties. Recent studies have shown that network metrics are capable of predicting 

software defects (Zimmermann & Nagappan, 2008; Tosun et al., 2009; Nguyen et al., 2010; Premraj and 

Herzig,  2011; Ma et al., 2016; Chen et al., 2016). Network metrics consist of ego and global network 

metrics, both of which can be used to assess the nodes (modules) of a software network (Chen et al., 2016, 

Gong et al., 2021). To create a defect prediction system with enhanced accuracy, Gong et al. (2021) 

integrated network metrics obtained through social network analysis from the software's dependency 

network with static code metrics. However, network metrics that the aforementioned researchers have used 

for SDP still fall under the category of traditional features. With new developments in deep learning 

technologies, researchers have shown interest in developing network representation methods that 

automatically learn the features and hidden characteristics of network nodes (Hamilton et al., 2017). 

Network Embedding is one of the methods to represent a network. As a promising method of network 

representation, network embedding could assist in applications that require network visualization, node 

classification, link prediction, and node clustering (Goyal & Ferrara, 2018). Diverse computational methods 

like random walk (traversing a graph by taking steps to neighboring nodes based on a stochastic process), 

matrix factorization (decomposing the adjacency matrix of a network into matrices of lower dimension), and 

deep learning are used to generate the representations. These methods generally seek to maximize an 

objective function to identify or retain essential network features. In Network Embedding, the nodes in the 

network are converted to vector representations in a lower dimensional space in a manner that preserves 

their respective structural information. Unlike network embedding approaches, which instantly comprehend 

the structural characteristics of software networks, network metrics are limited to analyzing software 

networks statically. Therefore, obtaining structure-related data from code modules using network embedding 

techniques and subsequently utilizing the learned characteristics for SDP may boost the accuracy of current 

prediction models. 

 

1.1 Contributions to the Research  
Various models for early defect prediction associated with within-project as well as cross-project defect 

predictions have been studied and presented by researchers as the significance of identifying defects in 

software modules has increased exponentially. To create SDP models in the initial research, conventional 

software metrics were used. These models were dependent on metrics, which include Halstead metrics 

(Halstead, 1977), McCabe metrics (McCabe, 1976), MOOD metrics (Harrison et al., 1998), CK metrics 

(Jureczko and Spinellis, 2010), etc. In addition, the industry has been dominated for the past 15 years by the 

object-oriented way of to software development. Therefore, the researchers transformed their technique for 

developing the models to object-oriented metrics. With the development of CK metrics, structural 

characteristics, complexity, and size of modules of object-oriented software were used as features of the 

software for SDP. The performance of these metrics outperformed conventional metrics in defect prediction 

(Coscia et al., 2012). But, these metrics are unable to accurately reflect the complexity of modern software. 

While MOOD metrics offer a global assessment of the software system, CK metrics seem to deal with 

software evaluation at the class level. The dependability of object oriented metrics is also impacted by the 

size of the software.Further, Network metrics have also been utilized by some researchers to assess defect 

prediction performance. However, the number of studies incorporating network metrics is comparatively 

lower than those focusing on object-oriented metrics. This is primarily due to the prevalence of defect 

datasets that predominantly include object-oriented metrics. Consequently, our work aims to evaluate the 

utilization of network embedding in comparison to research that relies on object-oriented metrics. However, 
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the use of object-oriented parameters poses a challenge in terms of the predictability of the output generated 

by the prediction model. This unpredictability arises from the use of different tools for collecting the metrics 

data. Chidamber and Kemerer Java Metrics, Understand, Eclipse Metrics Plugin, SourceMeter, Jarchitect, 

Radon, etc., are some of the popularly used tools for generating software metrics. Each tool may generate 

slightly different metrics data for the same software, leading to unreliable accuracy in defect prediction. This 

variation in software metrics data across various tools is due to the different algorithms used in the tool 

implementation. These tools support different programming languages to varying extents or may interpret 

code constructs in different ways. The use of software metrics also faces difficulty in the following: 1) 

capturing all relevant information using software metrics becomes challenging due to the intricate 

relationships between multiple interacting components of the software; 2) the impact of a class, dependency, 

or relationship on the entire system; 3)  correlations between classes that play different kinds of roles as a 

system expands and transforms during development. Recognizing these vulnerabilities, we were motivated 

to develop an SDP model that is independent of the software metrics obtained from various tools. 

    We were motivated to write this review article due to the increasing significance of network embedding in 

various software engineering applications (Zeng et al., 2021; Bahaweres et al., 2021; Dong et al., 2019). We 

recognize that network embedding has the potential to create SDP models that are not reliant on software 

metrics. The demand for such models to exhibit improved performance is critical, as they are essential for 

accurately predicting defects in software engineering practices. Contrary to previous research, our work 

introduces network embedding techniques for automatic feature vector learning in defect prediction. We aim 

to provide empirical evidence demonstrating that these techniques can achieve satisfactory performance 

compared to existing models. In summary, our contributions to the research field are as follows: 

 This study reviews the network embedding research papers from the last 15 years. Well-sampled 

research papers were used to create this article. 

 

 We have thoroughly conducted a study to discuss the various network embedding methods used for 

SDP. Additionally, we have categorized these methods into inductive and transductive approaches. 

 

 In addition, we have compiled a comparative analysis of network embedding methods used for SDP 

and compared their benefits and drawbacks.  

 

 The study addresses the existing challenges and outlines the future research directions that can 

improve the existing SDP models. 

 

We have framed the following three research questions to outline our work.  

(a) RQ1: How can the accuracy of defect prediction be increased by using different network representations 

of software projects? 

(b) RQ2: Which is the best methodology to be employed for network analysis in the context of SDP? 

(c) RQ3: What are the best techniques utilized for network embedding for predicting software defects? 

 

1.2 Organization of the Survey 

This paper has been divided into the following sections. We define the fundamentals and related works on 

SDP, software network analysis, and network embedding in Section 2 followed by Section 3 which 

describes the major categories of network embedding. We identify the categories of existing research based 

on embedding procedures. Observations concerning each technique are retrieved, and a comprehensive 

review of different embedding methods is put together. Section 4 focuses on the research methodology used 

for this review article. Further, we provide the applications of network embedding in software defect 

prediction in the 5th Section. In Section 6, we talk about our study's findings. Validity threats are mentioned 

in Section 7. A summary of this work and future directions is discussed in Section 8.  

 

2 Background and related work 

In this segment, background information is presented. It includes relevant research conducted on SDP, 

software metrics, class dependency networks, network analysis, and network embedding approaches. 

 

2.1 Software Defect Prediction 
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Quality control for software has extensively utilized SDP techniques, which can greatly reduce software 

development costs. SDP involves creating a predictive model using historical defect data, which determines 

the likelihood of a software module being defect-prone. The typical process of software defect prediction 

involves two stages. During the initial stage, defect data and code metrics are gathered from the software 

source code. The second stage involves classifying the modules using machine learning algorithms. These 

algorithms are designed to create an accurate model that generates consistent results with enhanced 

prediction performance. The objective is to develop a reliable and efficient approach for identifying defect-

prone modules. By incorporating SDP techniques into quality control processes, organizations can 

proactively identify potential software defects and take preventive measures, leading to improved software 

reliability and cost savings in the development lifecycle. The research work on SDP can be broadly 

categorized into the following categories, based on the scope and context of prediction. 

1. Within-project SDP: This approach utilizes information from the same project to construct the defect 

prediction model. The datasets used for training and testing purposes are generated from the current 

project (A.b) for which the prediction model is being developed. Here, 'A' refers to the project name, 

and 'b' indicates the version of the project. The model will be built based on the defect dataset 

obtained from 'A.b'. 

2. Cross-version SDP: In this approach, data from earlier versions of the same project is used. The 

training dataset is constructed using information from previous versions, while the test dataset 

includes data from the current version. For instance, the prediction model for project 'A.b' is trained 

using data from the previous version 'A.a,' and then the trained model is tested on 'A.b'. 

3. Cross-project SDP: Cross-project SDP involves building the prediction model using data from a 

project and then using the model to predict defects on another project. For example, to develop a 

prediction model for project ‘B’, the training dataset is constructed using data from project ‘A’, 

while the test dataset is generated using data from project ‘B’. This approach explores the 

transferability of defect prediction models across different projects. 

Numerous previous studies have made substantial use of static features (Premraj and Herzig, 2011). These 

studies involve examining the code of software modules to derive statistical features and extract traditional 

metrics. Process metrics are generated by evaluating code changes made in each version of the software 

module, providing insights into the software development process. Software metrics have frequently been 

used to predict defects for software projects (Gong et al., 2021). Since the early nineties, the object-oriented 

(OO) methodology has become very common in the software development industry. Numerous metrics, 

including the MOOD metrics set and the CK metrics, have been proposed by researchers to guarantee the 

quality of OO software. These metrics can be used in a variety of ways for real-world projects, and they 

have been validated by successful software development projects. Defect prediction based on network 

metrics (Ma et al., 2016; Fan et al., 2019), leverages class dependency networks for obtaining the metrics. In 

a study by Qu et al. (2021), class dependency networks and k-core decomposition (k = degree of node) were 

used to highlight that classes with larger values of k exhibit a higher probability of defects.  For SDP, a 

variety of machine learning techniques have been studied, such as Support Vector Machine, Neural 

Network, Naive Bayes, Bayesian Belief Network, Decision Trees, Random Forest as well as ensemble 

learning (Alharthi et al., 2021; Gurung, 2022). The common strategy used in current techniques is to extract 

latent structural and semantic characteristics from the software source code (Bahaweres et al., 2021; Huo et 

al., 2018; Yang et al., 2023). 

 

2.2 Software Network Analysis 
A graph or network data type is a significant type mainly used in our daily lives and for academic activity. 

Research activities have recently focused on developing network applications using machine learning (Hou 

et al., 2020). Some include anomaly detection, link prediction (Li et al., 2018; Du et al., 2022), node 

embedding, etc. All these applications make use of network analysis (Wang et al., 2022; Pinzger et al., 2008; 

Yang et al., 2018). Networks offer the most suitable framework for analyzing the structure and components 

of complex systems, such as software projects. Class dependency networks, software architecture maps, 

function call graphs, and software class diagrams are some of the networks that can be used to represent 

software systems.The conventional method of network representation presents several challenges when it 

comes to evaluating and interpreting large networks.One of the major issues faced while network analysis is 

determining how to mathematically represent a network as the space of interactions between nodes within a 
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network is enormous because of the heterogeneous properties of edges and nodes. It is challenging to 

separate graph or network data into smaller samples than other data types. The adjacency matrix, which is a 

square matrix with a size the same as the node count of the network, is a usual and basic representation 

technique of a network (Hamilton et al., 2017).  

 
Fig. 1 A sample network structure and its adjacency matrix. Zero entries are indicated using white blocks (Yang et al., 2021) 

The major disadvantage of using an adjacency matrix for graph data representation is high dimensionality 

and sparse representation of data. High dimensionality increases the computation cost. Some of the 

conventional approaches also include multidimensional scaling, IsoMap, Laplacian Eigenmap, etc. which 

typically require affinity graph construction and solving eigenvectors. A major drawback of these techniques 

is that they are not scalable. In addition, these methods lead to high computational burdens and make it 

challenging to design and implement parallel and decentralized algorithms. It is also difficult to use 

advanced machine learning algorithms with conventional network data as these methods generally require 

input data to be presented as individual, independent vectors. Due to these drawbacks, various alternative 

network representations have been proposed, and network embedding is one such technique that has the 

capability to address a variety of network analysis and processing tasks (Cai et al., 2018; Qu et al., 2021). 

2.3 Network Embedding 

Network Embedding (NE) technique encodes every node/vertex belonging to the network/graph into a real-

valued low-dimensional vector form (Xie et al., 2021). This is done to represent the network nodes in a 

manner such that it retains the basic properties of the network i.e. the geometric representation of the 

embedded vectors reflects the original relationships among the nodes of the network. This representation not 

only reduces the complexity involved in representing large graphs/network data but also has the additional 

benefit of automatically learning the features of graph/network. The encoding for the network is also 

effective in distinguishing the interaction between the nodes having various attributes. This can be defined 

as, for a network N = (V, E), where V denotes vertices while E denotes edges, a network embedding can be 

represented as a mapping  f: vi → yi ∈ R
d
, ∀ vi ∈ V given that d << |V | and the proximity measure for 

network  represented by N  is preserved by f, the mapping function (Goyal & Ferrara, 2018). Proximity 

measure refers to a function that indicates the similarity or the distance between a pair of nodes (Cai et al., 

2018).  

  

First-order proximity: It is the direct link between two network nodes. It is defined as the local proximity 

between the nodes/vertices and is thus efficient in representing the local structural information of the 

network/graph. 

 

Second-order proximity: It defines the extent of the resemblance of the neighboring structures between two 

nodes/vertices of a network/graph.  

 

The overview of network embedding framework is depicted in Fig. 2. Some popular techniques proposed for 

NE include node2vec (Grover and Leskovec, 2016), LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 

2014), etc. These are categorized under the distributional hypothesis, which focuses on the fact that nodes 

with high context similarity indexes are similar. To learn the relevant embeddings all the characteristics of 

the entities i.e. the nodes and edges need to be captured.  Fig. 3 presents an illustration of network 

embedding using DeepWalk algorithm. As indicated in Fig. 3, DeepWalk takes input in the form of a graph 
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(Fig. 3a) and generates representations of the graph's vertices with two latent dimensions (Fig. 3b). The 

categorization of the network embedding techniques has been discussed in the following section.  

 
 
Fig. 2 A basic network embedding framework 

 
Fig. 3 A karate network used for an illustration of network embedding. The snapshots were taken from the DeepWalk algorithm 

(Perozzi et al., 2014) 

 

3 Network Embedding Techniques 

This section contains the different approaches for embedding networks on the basis of the methodologies 

employed. The network embedding technique is for representing network data in a low-dimensional vector 

space while retaining as much network data as feasible (Li et al., 2022; Chen et al., 2018; Pereira et al., 

2019; Dai et al., 2019). The network embedding techniques differ mainly in how they understand the 

relationship between the network nodes, which needs to be preserved. The methods currently in use, though, 

are not particularly well categorized. 

 

3.1 Matrix Factorization-Based Algorithms 

Matrix factorization in network embedding represents graph properties (such as pairwise node similarity) in 

matrix format, which is further factorized to yield node embedding. To retain the network structure, various 

matrices are created. It includes a vertex-context matrix, transition probability matrix, and modularity 

matrix. It embeds high-dimensional representations of network nodes into a space of reduced dimension 

while maintaining the network structure. The input to these categories of algorithms is usually a graph made 

up of data features that are non-relational as well as high-dimensional characteristics. The output consists of 

a set of node embedding for each respective node.  

 

3.2 Deep Learning-Based Algorithms 
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Deep learning techniques have excelled in varied research domains, including computer vision, language 

processing, and others (Cao et al., 2016). In this technique of graph embedding, deep learning models are 

used for processing graphs. The models created are either straightforward adaptations of other disciplines or 

brand-new neural network models created exclusively for graph data embedding. The input to these models 

is in the form of nodes, edges, sampled paths, or the whole graph. The trained models based on Deep Neural 

Networks can then be used to create embedding of the network. The intermediate values, as well as the final 

output of the model, are the vectors representing the embedding. These deep learning models with a 

specially configured objective function preserve the network's proximity and structure. Further, this 

embedding technique is categorized into the following forms depending on whether a random walk is used 

or not for generating sample paths in the graph. The deep learning approach provides an efficient way to 

preserve the non-linear structure for handling massively complex networks. 

 

3.3 Reconstruction of Edge-Based Optimization 

The conventional network embedding technique also includes methods that focus on the edges of the 

network instead of nodes. It takes into consideration the network's local as well as the global proximity 

levels for embedding. To represent the edge, a low-dimensional vector needs to be created based on the 

source and target node embeddings concerning the edge. Embedding Methods on networks assist in 

obtaining the embedding by optimizing the parameters of objective function that retains numerous graph 

features. This graph embedding technique focuses on the optimization of objective functions based on edge 

reconstruction. The aim of the objective function used in this technique is to maximize the probability of 

reconstruction of edges. 

 

3.4 Graph Kernel 

Graph kernel is a popular approach that uses graph similarity. The graph kernel refers to a function 

corresponding to the graph's feature space responsible for representing the graphs and computing similarities 

between them. The majority of more productive and efficient graph kernels are built around predetermined 

structural features. It is an example of an R-convolution kernel. Each network representation consists of a 

vector generated by the graph kernel, and any two of the graphs are analyzed by checking the inner product 

of their respective vectors. The R-convolution kernels are a general method to present graph kernels on 

discrete compound items by iteratively breaking down networks into "atomic" sub-networks and comparing 

each of their pairs. It uses the comprehensive representation provided by some widely used graph kernels. 

 

3.5 Generative Model 

The input characteristics and class labels, conditional based on network parameters, can be used to create a 

generative model. Latent Dirichlet Allocation (LDA), responsible for interpreting a readable document in 

the form of subjects and topics acting as a distribution over words, serves as an illustration. Both node 

embedding and edge embedding can be done using a generative model. The input network is typically a 

heterogeneous network or a network with auxiliary information since it considers node semantics. 

    Based on the advancements in the above-mentioned techniques, deep learning-based models have shown 

better performance among the different network embedding methods (Cai et al., 2018). Deep learning-based 

embedding models can detect usable representations from complicated graph structures automatically. 

Examples of such implementations include DeepWalk (Perozzi et al., 2014), node2vec (Grover and 

Leskovec, 2016), and metapath2vec (Dong et al., 2017). The models mentioned above come under the 

category of random walk-based models. On the other hand, GCN (Kipf and Welling, 2017), struc2vec 

(Ribeiro et al., 2017), and SDNE (Wang et al., 2016) are some of the deep learning models without using 

random walk. They can handle sub-graphs of variable size in homogenous graphs and the interactions 

among nodes in heterogeneous graphs. However, Deep Learning is not without its drawbacks. In Deep 

Learning using random walks, the knowledge about the global structure is often ignored in favor of a node's 

local neighbors along the same path. Finding an "ideal" sampling technique is further challenging because 

embedding and sampling of paths are not simultaneously optimized inside a single framework. The 

computational cost is often significant for DL without using random walks. The summary of research 

articles related to different categories of network embedding techniques is provided in Table 1. This 

tabulation aims to identify and classify them based on their type, paradigm, and tasks for which they can be 

used. The network embedding paradigm indicates the ability to make predictions based on nodes that are 
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unknown during the training of the model. Transductive embedding techniques lack the ability to utilize 

unseen nodes while predicting the outcome. On the other hand, inductive models provide data about the 

nodes neighboring every node of the network to a symmetric aggregator, which uses the same set of 

parameters throughout the entire network. Consequently, they can forecast links on hidden nodes that were 

not present during training. Among the techniques mentioned in Table 1, only a few have been used for 

defect prediction in previous research works (Qu et al., 2021). As the context of our review work is software 

defect prediction, which deals with homogeneous networks (where all nodes of the network represent 

software modules and edges represent the connections between them) (Xie et al., 2021), the techniques listed 

in Table 1consist of homogeneous embedding techniques. Heterogeneous embedding techniques are not 

within the scope of our review. 

    This review work analyzes the papers published for network embedding and network analysis, 

considering their role in software defect prediction approaches. Fig. 4 depicts a year-by-year distribution of 

the papers published in the past 15 years for SDP using network analysis and network embedding.  

Researchers have been exploring the use of network analysis in SDP for quite some time. Zimmermann & 

Nagappan (2008) performed pioneering work in the area of SDP using network analysis in 2008. The 

interest of researchers was drawn towards network embedding with the development of advanced 

embedding techniques in recent years. From 2008 to 2022, network embedding studies have continuously 

received much attention for developing models that can effectively and efficiently produce reliable defect 

prediction results. We can conclude from the year-by-year distribution that researchers are very interested in 

network embedding techniques to develop consistently accurate models.  

 

 
Fig. 4 Year-wise papers published for software defect prediction using network embedding 

 

Table 1 List of network embedding techniques 
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SDP papers utilizing Network Embedding

SDP papers utilizing Network Analysis

Method Category Publication Year Tasks Type Paradigm 

DeepWalk   

(Perozzi et al., 2014) 

Deep Learning 

(Using Random 

Walk) 

KDD 2014 Node Classification Supervised Transductive 

GraRep 

(Cao et al., 2015) 

Node Proximity 

Matrix 

Factorization 

CIKM 2015 

Graph Clustering, 

Node Clustering, 

Node Classification, 

Visualization 

Supervised Transductive 

LINE  

(Tang et al., 2015) 

Edge 

Reconstruction  
WWW 2015 

Visualization, Node 

Classification, 

Link Prediction 

Supervised Transductive 

node2vec 

(Grover and 

Leskovec, 2016) 

Deep Learning 

(Using Random 

Walk) 

KDD 2016 
Node Classification, 

Link Prediction 
Supervised Transductive 

SDNE  

(Wang et al., 2016) 

Deep Learning 

(Without Using 

Random Walk) 

KDD 2016 

Node Classification, 

Link Prediction, 

Visualization 

Semi-Supervised Transductive 
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4 Research Methodology 

4.1 Search Strategy 

Our objective is to investigate and evaluate the current patterns and approaches in predicting software 

defects using network embedding. We specifically focused on research articles published from 2008 to 

2022. We conducted a thorough search across multiple databases including IEEE Explorer, ACM Digital 

Library, Springer, and Elsevier, and also included conference proceedings. Although our search yielded 

numerous research publications, we carefully selected 70 articles for in-depth analysis based on their title, 

abstract, citations, and relevance to network embedding and software defect prediction. Prior to composing 

this review, we conducted a comprehensive review of all the selected research articles. 

Inclusion Exclusion Criteria: Our objective was to conduct a comprehensive review of the research trend 

in software defect prediction using network embedding. To achieve this, we carefully selected 70 papers 

from the years 2008 to 2022 in order to encompass a wide range of relevant research. Our focus was on 

papers that evaluated and discussed the performance of models utilizing network embedding techniques. 

During our analysis of the published articles, we observed that the initial research efforts primarily revolved 

around the utilization of network analysis techniques for defect prediction. Notably, Zimmermann and 

Nagappan made significant contributions to the field in 2008. As network embedding techniques advanced, 

researchers began exploring their application specifically in predicting fault-prone modules within software 

systems. 

While conducting our review, we encountered an empirical study conducted by Qu and Yin (2021) that 

explored only seven embedding algorithms. In our work, we aimed to provide a broader understanding of 

various embedding techniques that could be employed for defect prediction. Consequently, studies that 

focused on network embedding frameworks and methods unrelated to software defect prediction were 

excluded from our review. Additionally, we excluded research articles that lacked robust validation 

procedures or failed to provide experimental findings. 

4.2 Research Questions: 

DNGR  

(Cao et al., 2016)  

Deep Learning 

(Without Using 

Random Walk) 

AAAI 2016 

Graph Clustering, 

Node Clustering, 

 Node Classification 

Unsupervised, 

Supervised 
Transductive 

Planetoid  

(Yang et al., 2016) 

Semi-Supervised 

Learning 
JMLR 2016 Node Classification Semi-Supervised 

Inductive, 

Transductive 

HOPE  

(Ou et al., 2016) 

Matrix 

Factorization 
KDD 2016 

Edge Reconstruction,  

Link Prediction, 

Vertex 

Recommendation. 

Supervised Transductive 

GCN  

(Kipf and Welling, 

2017 

Graph-Laplacian 

Regularization 
ICLR 2017 Node classification Semi-supervised Transductive 

Walklets  

(Perozzi et al., 2016) 

Deep Learning 

(Using Random 

Walk) 

ASONAM 2016 

Graph Clustering, 

Node Clustering, 

Node Classification 

Unsupervised Transductive 

Graph2vec  

(Narayana et al., 

2017) 

Deep Learning 

(Using Random 

Walk) 

ACM 2017 

Graph Clustering, 

Node Clustering, 

Node Classification 

Unsupervised Transductive 

GraphSAGE  

(Hamilton et al., 

2017) 

Deep Learning 

(Using Random 

Walk) 

NIPS 2017 Node Classification 
Supervised, 

Unsupervised 
Inductive 

DNE  

(Shen et al., 2018) 

Discrete Matrix 

Factorization 
IJCAI 2018 Node Classification Supervised Transductive 

NetMF 

(Qiu et al., 2018) 

Matrix 

Factorization 
ACM 2018 Node Classification Supervised Transductive 

ProNE 

(Zhang et al., 2019) 

Sparse Matrix 

Factorization 
IJCAI 2019 Node Classification Supervised Transductive 

BinaryNE 

(Zhang et al., 2021) 

Deep Learning 

(Using Random 

Walk) 

ACM 2021 Node Classification Supervised Transductive 
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In order to maintain a focused approach, we formulated three research questions that would provide valuable 

insights to researchers interested in studying and utilizing network embedding for software defect prediction. 

The benefits associated with each research question are outlined in Table 2 below: 

 

Table 2 Motivation for exploring the research questions 

Id Research Question Motivation 

RQ1 How can the accuracy of defect prediction 

be increased by using different network 

representations of software projects? 

It will help to establish the importance and role of 

network representation learning in software defect 

prediction. 

RQ2 Which is the best methodology to be 

employed for network analysis in the 

context of SDP? 

It will be easier for new researchers to understand the 

existing network analysis techniques prevalent in 

software defect prediction and replicate previous 

studies. 

RQ3 What are the best techniques utilized for 

network embedding for predicting software 

defects? 

It will help researchers to identify the research trends 

and identify techniques that should be researched 

further. 

 

RQ1 - How can the accuracy of defect prediction be increased by using different network representations of 

software projects? 

This RQ looks into the role played by software dependency networks in the process of predicting software 

defects. A summary of the papers published is tabulated in Table 2. 

 

RQ2 - Which is the best methodology to be employed for network analysis in the context of SDP? 

This RQ focuses on the network analysis techniques useful in SDP. Table 3 provides the list of frequently 

used network measures. Section 5.2 provides details of the same. A summary of the papers published is 

tabulated in Table 5. 

RQ3 - What are the best techniques utilized for network embedding for predicting software defects? 

Table 1 presents a comprehensive overview of the available network embedding techniques that can be 

applied to handle networks. The aim of Research Question (RQ) is to identify the embedding techniques 

commonly used for SDP. In Section 5.3 of our work, we conduct a detailed analysis specifically addressing 

this question. We examine the embedding techniques commonly employed in software defect prediction and 

assess their effectiveness. Furthermore, we focus on identifying the most promising techniques that have the 

potential to enhance the predictive capabilities of defect prediction models. 

 
Table 3 List of network measures used frequently by many studies 

S. No. Metric Definition 

1. Pairs Total count of distinct node pairs 

2. Ties edge count represents the total count of directed ties 

3. Size Count of nodes to which the ego is immediately linked 

4. Density The proportion of potential ties available currently 

5. nWeakComp Total weak components / size 

6. ReachEfficiency 2StepReach / size 

7. 2StepReach The proportion of nodes that are present after two steps 

8. EgoBetween The proportion of routes with the shortest distance between neighbors that go through ego. 

9. Broker Total pair of nodes that aren't linked directly. 

10 nBroker Broker / size 

11.  Betweenness Determines the count of shortest paths existing between all the other entities 

12. Reachability Nodes accessible from a specific node 

13. Efficiency   Network's effective size / network's total size 

14. Hierarchy The distribution of the constraint metrics all over the neighbours 

15. Degree Total count of nodes next to a specific node 

16. Closeness The total length of all shortest routes from a specific node to all the remaining  nodes 

17. Constraint Measures the degree of a node's constraints 

18. Power Specifies the number of links a node has in its neighborhood 

19. Eigenvector Assigns the nodes of the dependency graph with relative scores 
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5 Review of different approaches for network analysis and network embedding in software defect 

prediction 

The following section highlights significant research articles on defect prediction using network embedding. 

5.1 Significance of network representation of software in Software Defect Prediction 

 

Static code metrics, frequently utilized in defect prediction, focus on collecting statistics about software 

programs. However, they fail to capture the semantics and structural characteristics of software program 

modules. This limitation negatively impacts the performance of defect prediction models. To overcome this 

limitation, various network representations, such as dependency graphs, call graphs, control flow graphs, 

data flow graphs, and class hierarchy graphs, can be used to effectively capture different aspects of the 

software system. 

    Dependency networks in software systems can be represented as graphs, where modules serve as nodes 

and the connections between modules represent dependencies. If module X calls module Y, module X 

inherits from module Y, or module X references a variable in module Y, then module X has a dependency 

on module Y. Each module belongs to both a global network and an ego network. The ego network of a 

module consists of the module itself and any other modules it depends on or is dependent upon. On the other 

hand, the global network represents the overall network of all modules within the software system (Tosun et 

al., 2009). 

    Zimmermann & Nagappan (2008) conducted significant research in the field of software defect prediction 

using dependency networks, as documented in their work. They focused on exploring the potential of 

leveraging module dependencies within software systems. While previous studies had also examined 

dependencies and faults, Zimmermann et al. contributed to the domain by approaching the issue from a fresh 

perspective. Their investigation specifically emphasized the interconnections among different software 

modules. To assess the relationship between dependencies and defect prediction for binaries, they conducted 

an evaluation using Windows Server 2003. They employed network analysis on dependency graphs to 

identify the most critical binaries within the system. This analysis required determining dependencies, 

complexity metrics, and network analysis metrics for Windows Server 2003. Their significant findings 

highlighted that network measures exhibited higher quality in defect prediction compared to complexity 

measures. These network measures proved effective in identifying critical binaries that were overlooked by 

complexity metrics. The majority of network metrics demonstrated noticeable correlations with defects, with 

most of them being mildly positive. Based on these observations, Zimmermann et al. employed two 

algorithms, linear regression and logistic regression, to classify the binaries in Windows Server 2003 as 

either fault-prone or non-fault-prone. The results showed a higher recall value, surpassing complexity 

metrics by 0.10. 

    In their study on software, Ma et al. (2016) utilized file-level dependency graphs to explore the 

relationship between effort-aware defect prediction. They conducted empirical research to examine how 

network measures influence the prediction of fault-prone modules, taking into account the effort required. 

The results revealed that several network measures exhibited a significant positive correlation with fault-

proneness. Additionally, they observed that the performance of network measures varied depending on the 

prediction setup and that different projects exhibited inconsistent effects of network measures. 

    In their paper, Gong et al. (2021) conducted a review on the utilization of dependency networks and the 

impact of network measures on SDP. They advocated for the integration of network metrics alongside code 

metrics for more accurate predictions. Additionally, they recommended considering both ego and global 

metrics as they exhibit distinct behaviors in the prediction process. Yang et al. (2022) developed a sequence 

of method calls that preserve the structure-related code context information and the semantic details 

represented by the token sequence. This allows for a deeper investigation of the connections between 

method call sequences, enabling the learning of both the syntactic structure and the code semantics within 

the methods. In the study done by Xu et al. (2021) the issue with relying on software metrics to predict all 

types of defect is highlited. To resolve the issues, they introduced Augmented-CPG, a novel code graph 

representation method, along with a graph neural network, to predict defects occurring due to data validation 

issues and user session errors.  

    Similarly, Gao et al. (2019) performed an analysis on traditional metrics, merged metrics, and network 

measures. They discouraged the merging of metrics and emphasized the advantages of utilizing complex 
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network features in software defect prediction across different versions. Table 4 provides a summary of the 

aforementioned studies. 

 

5.2 Technique used for network analysis in software defect prediction 

In recent years, K-core decomposition has been employed by researchers to analyze various types of 

networks, including protein interaction networks, complex social networks, and large-scale software 

engineering networks (Yang et al., 2016). A recent application of K-core decomposition involves predicting 

defects in software through the analysis of Class Dependency Networks (CDNs) (Qu et al., 2021). The 

researchers discovered an interesting pattern in the defect-prone sections of the software, noting that classes 

or modules with higher values of k in the k-cores are more likely to have defects. To leverage this insight, 

they introduced a simple yet effective approach called "top-core". It reorders the classes present in the list of 

suspicious classes based on their k-core values. This means that classes with higher k values are prioritized 

and placed higher in the list after reordering. The experiment employed Random Forest and Logistic 

Regression as the prediction models. The bug prediction results showed an improvement of 11.5 percent for 

Random Forest and 12.6 percent for Logistic Regression. 

    In the study presented in (Qu et al., 2021), the software network analysis did not account for the direction 

and weight of the couplings, thereby overlooking the importance of link strength. Furthermore, the study 

failed to consider several significant couplings among classes, which has a considerable impact on 

accurately representing the complex topology of software projects. Consequently, this limitation affects the 

reliability of metrics derived from the network, such as coreness (Pan et al., 2022). Building upon this 

research, Du et al. (2022) addressed these shortcomings by incorporating a broader range of coupling types. 

They proposed CoreBug, an enhanced bug prediction method that takes into consideration effort-related 

factors. It provides a more precise characterization of classes and the relation between them. CoreBug 

incorporates nine different types of couplings, considering their direction and strength as well. 
 

Table 4 Summary of papers published using network representation of software for Software Defect Prediction 

Authors and 

Year 

Title Results Limitations 

Zimmermann 

and Nagappan 

(2008) 

Predicting defects using 

network analysis on 

dependency graphs  

 

Network measures have more defect 

prediction quality as compared to 

complexity measures. These network 

measures can find the critical binaries 

missed by the complexity metrics. 

Assessing software with 

consideration for alternative 

programming languages. 

 

Ma et al. 

(2016) 

Empirical analysis of 

network measures for 

effort-aware fault-

proneness prediction  

 

The majority of the network measures 

have been found to have a significant 

positive relation to fault-proneness; 

network measures show performance 

variation depending on prediction 

settings, and network measures have 

inconstant effects on different 

projects. 

Network measures alone 

inadequately represent 

intricate software 

relationships. Effort 

estimation overlooks testing 

efficiency. 

 

Gao et al. 

(2019) 

Empirical Study: Are 

Complex Network 

Features Suitable for 

Cross-Version Software 

Defect Prediction? 

Highlighted the benefits of the 

network’s complex features in cross-

version software defect prediction. 

Does not thoroughly assess 

the cost parameters 

associated with the model's 

utilization. 

 

Gong et al. 

(2021) 

Revisiting the Impact of 

Dependency Network 

Metrics on Software 

Defect Prediction  

 

Supported the usage of network 

metrics along with code metrics of the 

software. 

Code quality assessment 

was incomplete due to the 

limited use of code metrics, 

resulting in insufficient 

coverage. 

Xu et al. 

(2021) 

Software Defect 

Prediction for Specific 

Defect Types based on 

Augmented Code Graph 

Representation 

Introduced Augmented-CPG, a novel 

code graph representation method 

along with graph neural network to 

predict three different defect types. 

The evaluation does not 

extensively examine the cost 

parameters linked to the 

model's usage. 

Yang et al. 

(2022) 

Fine-Grained Software 

Defect Prediction Based 

on the Method-Call 

Sequence 

Developed a sequence of method calls 

that preserves both the structural 

information of the code context and 

the semantic information represented 

Evaluating the model's 

generalization performance 

by employing a broader 

range of classifiers for 
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by the token sequence. validation. 

 

    CoreBug introduces a weighted directed class dependency network (WDCDN) as its initial step. It then 

utilizes the k-core decomposition's generalized form to determine each class's respective coreness value 

within the WDCDN. By combining the coreness value with the relative risk obtained from logistic 

regression analysis, CoreBug calculates the likelihood of a given class containing bugs. Experimental results 

confirmed the superior performance of CoreBug compared to the baseline methods. For more detailed 

information, please refer to Table 5, which provides an overview of the papers mentioned. 
 

Table 5 Summary of papers published on network analysis techniques in Software Defect Prediction 

Authors and 

Year 

Title Results Limitations 

Qu et al. 

(2021) 

Using K-core Decomposition on 

Class Dependency Networks to 

Improve Bug Prediction 

Model's Practical Performance 

 

There is a greater chance that 

the classes or modules in k-

cores having higher k numbers 

will likely have defects. 

The class dependency network 

is deficient in encompassing 

more intricate dependencies. 

Du et al. 

(2022) 

CoreBug: Improving Effort-

Aware Bug Prediction in 

Software Systems Using 

Generalized k-Core 

Decomposition in Class 

Dependency Networks 

Experimental results on 

CoreBug confirmed its 

superiority among the baseline 

methods. 

Needs evaluation spanning a 

broad spectrum of projects, 

incorporating those originating 

from diverse programming 

languages. 

 

5.3 Most often used network embedding techniques for Software Defect Prediction 

In their work, Qu et al. (2018) introduced a novel approach called node2defect, aimed at enhancing the 

predictive capabilities of defect-predicting algorithms. The key component of this approach is the utilization 

of node2vec, a recently developed network embedding technique that utilizes random walks. By leveraging 

node2vec, node2defect enables the automatic extraction of structural aspects from a software's class 

dependency network. This network embedding technique effectively captures and encodes the dependencies 

between classes into lower-dimensional vectors, offering new possibilities in defect prediction. Moreover, 

node2defect integrates the learned structural vectors with conventional software engineering metrics to 

improve the predictability of faulty modules in software. The proposed method was evaluated through 

experiments and studies conducted on open-source Java projects. The most significant research finding of 

the study demonstrated a 9.15% improvement in the F-measure, highlighting the efficacy of the node2defect 

approach. 

    Fan et al. (2019) introduced a technique namely Defect Prediction via Attention Mechanism (DP-AM) 

that leverages program semantics and static metrics using the attention mechanism. DP-AM utilizes abstract 

syntax trees (ASTs) of programs to generate vectors, which are further encoded in the form of digital vectors 

through mapping and the word embedding techniques. These numerical vectors are then fed into a Recurrent 

Neural Network (RNN) to automatically learn the semantic aspects of software programs. The framework 

employs a self-attention process to establish connections between these features. Finally, DP-AM combines 

these semantic features with conventional static measurements to achieve accurate software fault prediction. 

Experiments conducted on Java projects demonstrated the effectiveness of DP-AM, resulting in an average 

improvement of 11% in the F1 measure. This showcases the capability of DP-AM to enhance software 

defect prediction by effectively utilizing program semantics and static metrics. 

    Tong et al. (2019) conducted significant research in software defect prediction using network embedding. 

They employed the kernel spectral embedding technique (KSETE) specifically in the context of cross-

project defect prediction. Through their experiments, they demonstrated the effectiveness of KSETE in 

accurately predicting defects across different projects. 

 

    In another study by Qu and Yin (2021), the capabilities of various network embedding methods in 

software bug prediction was evaluated. They examined seven different network embedding algorithms, 

utilizing the node2defect approach which combines traditional software engineering metrics with the 

embedded vectors. The findings revealed that node2defect outperformed traditional metrics by a significant 

margin of +14.64% in terms of the MCC (Matthews Correlation Coefficient) score. The network embedding 
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algorithm, ProNE, demonstrated superior performance compared to the other network embedding 

algorithms. Furthermore, Figure 5 illustrates the average execution time of the seven algorithms used in the 

study (Qu and Yin, 2021), with ProNE exhibiting the fastest execution time of 1.14 seconds.  

 

    Zeng et al. (2021) presented a model that utilizes the structural features of software by employing a class 

dependency network and generating embeddings. To address data imbalance in the defect dataset, they 

employed SMOTETomek sampling technique. This approach was evaluated on eight open-source programs, 

and the final outcomes showcased the superiority of GCN2defect over the leading method. On average, 

GCN2defect outperformed the leading method by 6.84% to 23.85% F-measure value. This demonstrates the 

effectiveness of the model in improving software defect prediction accuracy. 

 

    In their research, Yang et al. (2023) examined the relationships between methods by leveraging a method-

calling network, which effectively captures the structural details of a software system. Their proposed 

framework comprises two distinct stages. In the first stage, network metrics are extracted from the network 

of method calls, and metrics from network embedding are generated using the node2vec embedding 

technique. In the second stage, the extracted network metrics and embedding metrics are integrated with 

traditional code metrics to be the input for the defect prediction model. 

    A deep learning-based approach was introduced by Tang et al. (2023) to detect defects at the function-

level. The method utilizes a control flow graph to obtain semantic features of the code as node embeddings. 

Additionally, graph neural networks are employed to obtain structured data from the graph. Experimental 

results indicate that the proposed method, called CSGVD, achieves an accuracy of 64.46% on a dataset 

gathered from CodeXGLUE for defect detection. 

    A refined level defect detection framework was developed by Dong et al. (2023), incorporating graph 

embeddings at the subgraph level. The framework utilized the Code Property Graph to extract syntactic and 

semantic knowledge from the program code, enabling the creation of subgraphs. Each subgraph is then 

embedded, and machine learning classifiers are used to evaluate the datsets originating from C/C++ projects 

in NVD and SARD. The framework achieves an impressive 95.15% F1-measure, validating the 

effectiveness of this approach. 

    Table 6 provides a summary of the papers mentioned above, showcasing their key contributions and 

findings. Moreover, based on an extensive study of various network embedding techniques, Table 7 presents 

a compilation of the most promising techniques that can enhance the predictive capability of defect 

prediction models. 

 
Fig. 5 Average execution time of network embedding algorithms as per Qu & Yin (2021) 

As mentioned previously, both the embedding methods mentioned earlier and those utilized in (Qu & Yin, 

2021) are transductive in nature. This implies that the embeddings are learned based on the existing graph 

structure, restricting predictions to instances that have already been observed in the network during training. 

However, given that the software undergoes regular structural changes such as module additions or 

removals, it may be more advantageous  

 
Table 6 Summary of papers published using Network Embedding techniques for Software Defect Prediction 

Authors 

and Year 

Title Results Limitations 

8.64 

3.7 

84.2 

8.07 

1.14 

2.24 25.23 

DeepWalk

GraRep

LINE

node2vec

ProNE

SDNE

Walklets
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Qu et al. 

(2018) 

Node2defect: using 

network embedding 

to improve software 

defect prediction 

Presented a completely new approach called 

node2defect to improve the prediction 

capability of defect-predicting algorithms 

using node2vec. It helps to automatically 

extract the structural aspects of the software 

using its class dependency network. 

The embedding generated 

from the class dependency 

network inadequately captures 

the relationships among 

software components. 

Fan et al. 

(2019) 

Deep Semantic 

Feature Learning 

with Embedded 

Static Metrics for 

Software Defect 

Prediction 

Proposed a framework to fully use program 

semantics and static metrics using the 

Attention Mechanism namely defect 

Prediction via Attention Mechanism (DP-

AM). It uses the program's abstract syntax 

trees and word embeddings. 

Overlooks the significance of 

embedding dimension effects. 

Word embeddings struggle to 

adequately capture code-

specific semantics, structures, 

and context. 

Tong et al. 

(2019) 

Kernel Spectral 

Embedding Transfer 

Ensemble for 

Heterogeneous 

Defect Prediction 

They successfully employed the kernel 

spectral embedding technique (KSETE) in 

cross-project defect prediction. 

The model is evaluated using a 

limited selection of projects. 

Qu et al. 

(2021) 

Evaluating network 

embedding 

techniques' 

performances in 

software bug 

prediction. 

Evaluated the performance of network 

embedding techniques in the prediction of 

software bugs.  The  study compared the 

performance of seven network embedding 

algorithms by utilizing node2defect. 

Does not incorporate more 

advanced dependency 

capturing graphs and 

embedding techniques. 

Zeng et 

al.(2021) 

GCN2defect : Graph 

Convolutional 

Networks for 

SMOTETomek-

based Software 

Defect Prediction 

The proposed model involves obtaining 

structural features of software using a class 

dependency network and generating 

embeddings. The model was evaluated on 

eight open-source projects, and it achieved 

improvements in terms of F-measure. 

The evaluation is deficient in 

terms of a broad spectrum of 

projects, and there is a need to 

expand the assessment metrics. 

Yang et 

al.(2023) 

A Method-Level 

Defect Prediction 

Approach Based on 

Structural Features 

of Method-Calling 

Network 

Presented a new framework for 

automatically encoding method calling 

networks with node2vec and then combine 

the resulting embeddings with network 

metrics of the method calling network. 

The model's capacity to 

capture complex patterns 

hasn't been evaluated for 

different embedding 

dimensions, a crucial factor 

that directly influences its 

performance. 

Tang et al. 

(2023) 

CSGVD: A deep 

learning approach 

combining sequence 

and graph 

embedding for 

source code 

vulnerability 

detection 

The method utilizes a control flow graph to 

extract semantic features of the code as 

node embeddings. Additionally, graph 

neural networks are employed to extract 

structured data from the graph. 

Estimating computational 

expenses and conducting 

comparisons with baseline 

measures. 

 

Dong et al. 

(2023) 

SedSVD: Statement-

level software 

vulnerability 

detection based on 

Relational Graph 

Convolutional 

Network with 

subgraph embedding 

The framework utilized the Code Property 

Graph to extract semantic and syntactic 

knowledge from the source code, enabling 

the creation of subgraphs. Each subgraph is 

then embedded, and machine learning 

classifiers are used to evaluate the datsets 

originating from C/C++ projects in NVD 

and SARD. 

Lacks evaluation that spans 

projects involving a diverse 

range of programming 

languages. 

 

 

to employ an inductive method that enables predictions to be made on occurrences that have not been 

observed in the network during training. Surprisingly, no research has been published utilizing the inductive 

network embedding method for software defect prediction. According to Table 1, network embedding 

techniques like Planetoid (Yang et al., 2016) and GraphSAGE (Hamilton et al., 2017) can be employed to 

predict fault-prone modules using the inductive approach. 

 
Table 7 Summary of enhanced network embedding techniques. 

Method Technique Advantages 
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DNE Discrete Matrix 

Factorization 

While achieving competitive classification results, DNE has less computational and 

storage complexity than leading network embedding techniques. 

NetMF Matrix 

Factorization 

NetMF's direct factorization consistently outperforms implicit approximation 

models. It combines LINE, PTE, DeepWalk, and node2vec in a matrix factorization 

framework.  

BinaryNE Deep Learning 

Based, With 

Random Walk 

BinaryNE not only outperforms traditional continuous vector-based network 

embedding methods in search speed by more than 23 times but also in terms of 

search quality. 

 

6 Discussion 

The previous section highlights the significant influence of network analysis on the outcomes of defect 

prediction models. The effectiveness of these models heavily relies on the utilization of software 

dependency networks and network embedding techniques, which have proven to be highly advantageous in 

bug prediction. Over time, researchers have transitioned from static software metrics to object-oriented 

metrics and, subsequently, to incorporating module dependencies within the software to improve the 

accuracy of defect prediction. Static metrics proved inadequate in capturing the intricate and dynamic nature 

of modern object-oriented software, leading to the adoption of object-oriented metrics for defect prediction. 

However, these metrics faced limitations in providing the defect prediction models with the necessary 

generalization capabilities, as the metrics data relied on the specific tools used for their generation. To 

address this issue, network analysis emerges as a viable solution, offering a means to visualize and analyze 

complex networks of significant magnitude. Moreover, software dependency networks enable the capture of 

the structural dependencies among software modules. The application of K-core decomposition to class 

dependency networks (referred to as CoreBug) enhances the effectiveness of effort-aware bug prediction 

models by accurately characterizing classes and the relationships between them. Our survey findings also 

indicate that the majority of network measures display a noteworthy positive correlation with fault-

proneness. This supports the notion of combining network metrics with traditional software engineering 

metrics. It is worth noting that network embedding methodologies can effectively capture and encode class 

dependencies into lower-dimensional vectors. Among the techniques discussed in Section 5.3, ProNE stands 

out as the fastest approach. An interesting observation from our results is that DNE, NetMF, and BinaryNE 

are techniques that can potentially enhance defect prediction accuracy. Furthermore, we observe that the 

network embedding techniques employed in software defect prediction are predominantly transductive in 

nature. However, considering the regular structural changes that occur in software, it is worth exploring the 

use of inductive network embedding methods to determine if they can contribute to improved prediction 

accuracy. 
 

6.1 Challenges and Future Research Directions 

6.1.1 Enhancing Generalizability and Scalability of SDP models 

Existing SDP approaches encompass a software project represented as a network of modules, where nodes 

denote entities like classes and packages, and edges depict the relationships between them. The network 

embeddings derived from these graphs capture intricate information pertaining to the modules in the 

network structure. In past studies focusing on software metrics, the prevalent approach often revolved 

around adapting models to the unique attributes of a particular software or utilizing a generic model 

customized for a specific software and context. This practice led to the development of numerous models, 

each tailored to a distinct software type. Despite the flexibility of embedding-based models, which can 

leverage embeddings from diverse input graphs, they have struggled to attain the desired level of generality 

expected from a comprehensive graph model for defect prediction. Consequently, a promising direction for 

future research lies in investigating whether a model with the capability to effectively learn from all types of 

software graphs exists, thereby addressing the current limitations and enhancing the versatility of defect 

prediction methodologies. 

 

6.1.2 Beyond Classification: Explainability in SDP models 

Applying eXplainable Artificial Intelligence (XAI) techniques in predicting software defects not only 

improves the transparency and dependability of the models but also empowers developers to make well-

informed decisions and implement targeted actions for defect mitigation. Furthermore, it illuminates how 

embeddings impact the classification mechanism of modules as defect-prone or non-defect-prone, shifting 
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from perceiving the Software Defect Prediction (SDP) model as a black box. Understanding the key 

embeddings that significantly influence the model's decisions assists developers and stakeholders in 

comprehending the factors contributing to software defect predictions. This proves beneficial by providing 

insights into why a specific module or code segment is identified as more susceptible to defects. 

Advancements in methodologies, such as attention mechanisms, offer the capability to tackle the non-

interpretable aspects of SDP models, particularly in the case of deep learning models that depend on 

network embeddings from graphs. The obtained attention weights possess the ability to highlight the 

sections of the input graph that have a more significant impact on defect prediction results, as indicated by 

their higher attention scores. 

 

6.1.3 Mitigating Bias in SDP Models 

Existing SDP models that rely on embeddings have not investigated the impact of balancing techniques. The 

absence of such considerations may result in biased models, introducing unfairness in defect prediction 

quality. The underlying challenge in SDP addresses the classification of defect-prone and non-defect-prone 

classes. As non-defect-prone classes typically outnumber defect-prone ones, the embedding dataset exhibits 

an imbalance, affecting the development of models. While previous research has attempted to mitigate this 

bias through the application of oversampling and undersampling techniques, these methods have primarily 

been applied to software metrics datasets, rather than embedding datasets. In particular, this gap highlights 

the necessity of addressing the unfairness issue arising from data imbalance through an empirical study 

focused on embedding datasets sourced from diverse projects. Another contributing factor to this bias is the 

utilization of inadequate evaluation metrics, the insufficiency of which tilts the focus of learning objectives 

towards accuracy of defect prediction. While recent studies have attempted to mitigate this bias by assessing 

developed models using parameters beyond accuracy, the evaluation of related embedding-based studies in 

the domain of defect prediction research remains limited, with numerous issues yet to be thoroughly 

investigated. For example, it is essential to investigate whether the learning process of embeddings from 

graphs influences the prediction results. Additionally, exploring the potential existence of algorithmic bias 

among various network embedding techniques and examining the interplay between fairness, bias, 

discrimination, and the accuracy of embeddings-based SDP models requires further research. 

 

6.1.4 Validating SDP models: Establishing Links with Practical Implementations 

The majority of established Software Defect Prediction (SDP) models rely on a commonly utilized dataset 

widely employed by researchers in the field. This dataset encompasses defect data from sources such as the 

PROMISE repository, AEEM, NASA datasets, SOFTLAB Dataset, and the ReLink Dataset. The extended 

usage of these datasets over time has created a gap, posing a challenge for applying models developed with 

them to the complexities of present-day software. Given the diverse nature of modern software projects, it is 

crucial to approach the issue of Software Defect Prediction (SDP) in a manner that takes into account the 

varied characteristics of these projects. Consequently, it is crucial to subject the developed models to 

meticulous and thorough validation processes before incorporating them into real-world applications. Hence, 

bridging this gap necessitates collaborative initiatives that engage diverse industries and research 

communities. These efforts aim to comprehend the functionality and constraints of models in practical 

projects, integrating methodologies to overcome model limitations based on this understanding. Developing 

models grounded in new benchmark datasets is crucial for assessing their applicability in diverse industries, 

especially within the context of modern complex software systems. 

 

6.1.5 Enhancing Robustness in SDP models 

It is also imperative to ensure that developed models are resilient to changes in software and programming 

paradigms. Performing a sensitivity analysis on the model's performance with regard to data and 

programming paradigms provides valuable insights into its stability. This analysis aids in identifying 

potential improvements in model specifications, design, and training processes to enhance the practical 

applicability of the model in real-world scenarios. Beyond its predictive functions, measuring the 

uncertainty of a model proves to be a crucial asset for end-users. This method affords users the ability to 

finely adjust and appraise the confidence associated with the model's predictions. Gaining insight into the 

degree of uncertainty offers a nuanced perspective, enabling individuals to make more informed decisions 

grounded in the reliability and certainty of the model's output. This not only elevates the overall 
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effectiveness of the model but also fosters transparency and accountability in the decision-making process. 

Assessing how the outcomes of models used for defect prediction are influenced by the size of embeddings 

is a crucial aspect of fine-tuning model performance. Embedding size, in this context, refers to the 

dimensionality of the vector space where features are represented. It is tied to how well the model captures 

and represents patterns and relationships in the data. To thoroughly examine this influence, one should 

systematically explore different embedding sizes, such as 32, 64, 128, and 256. Maintaining a consistent 

dataset and model architecture across experiments while varying only the embedding size is essential. The 

use of cross-validation ensures result robustness, enabling a comprehensive analysis of model performance. 

 

6.1.6 Prediction on Dynamic graphs 

The majority of studies leveraging network embeddings for defect prediction have used static graphs to 

derive embeddings for model construction, thus overlooking the dynamic nature of the software 

development process. In practical situations, software modules are subject to continuous alterations, 

involving instances where modules are either removed or new ones are added during the maintenance phase. 

Additionally, dynamic changes occur when introducing or removing new feature updates in the software. 

Therefore, for effectively capturing these dynamic variations, it is recommended to employ appropriate 

graph structures, such as dynamic call graphs. This strategy equips the model to adapt to modifications in 

the software, ensuring a more responsive and adaptable predictive framework. An alternative approach 

entails utilizing a dynamic graph presented as a series of graph snapshots, with a specific emphasis on 

capturing software changes. This technique facilitates a detailed examination of the evolving structure, 

contributing to a thorough understanding of the software's dynamic nature over time. Integrating dynamic 

random walk sampling with other algorithms that capture graph's dynamic properties can be used to address 

the concern. This integrated strategy harnesses the strengths of multiple algorithms, offering a more 

comprehensive and nuanced understanding of evolving graph structures in dynamic environments. Pursuing 

this direction in research is deemed crucial. 

 

6.2 Threats to Validity 

The following section examines the significant factors that can have effects on the validity of our study. 

6.2.1 Internal Validity 

The defect prediction strategies examined in the research papers we surveyed primarily adopt a transductive 

approach, which may introduce biases in the obtained results. To address this potential limitation, we 

conducted a comparative study of inductive embedding techniques that can be employed to develop defect 

prediction models, aiming to provide a more comprehensive and unbiased perspective. Another significant 

internal validity concern is that our work solely focuses on evaluating the performance of network 

embedding in comparison to traditional code metrics for software defect prediction. We do not consider 

other categories of metrics such as change metrics, churn metrics, etc. This limitation arises due to the 

unavailability of software project histories, leaving us with only the source code as the available data. 

Nonetheless, we believe that our study results will support researchers in making better use of the software 

source code and contribute to their understanding and application of defect prediction methodologies. 

 

6.2.2 External Validity 

In our study, a potential threat to external validity pertains to the data sets utilized. The majority of papers 

included in our analysis relied on experiments conducted on public data sets, while only a few utilized 

private data sets. These data sets exhibit variations in terms of software metric sets, dimensions, and types. 

Consequently, the generalizability of the results to software projects that are not open source may be 

compromised. To mitigate this potential threat, it would be beneficial to consider a wider range of software 

projects of commercial nature during future investigations. By including such projects in the analysis, the 

outcomes can be improved, and the applicability of the results can be expanded to a broader context. 

 

7 Conclusion 

In a pioneering effort, this study presents a comprehensive review and analysis of the literature, focusing on 

works utilizing network embedding for Software Defect Prediction. It explores a wide range of embedding 

techniques employed in this domain. The study initially presents a formal description of network analysis in 

software and network embedding. The research meticulously analyzes papers from two distinct perspectives: 
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the embedding methods and the specific developments in its application to SDP. The analysis focuses on 

three major groups of methods: deep learning-based, factorization-based, and random walk-based, 

examining the structure and features extracted by various network embedding techniques. The article also 

emphasizes the application of network analysis in dependency graphs and highlights recent advancements in 

network embedding techniques used for SDP. We highlight the advantages of the utilization of enhanced 

embedding techniques, as they have the potential to increase defect prediction models' efficiency. By 

focusing on these aspects, the study provides a holistic understanding of the diverse range of techniques 

employed in the crucial task of determining whether a software module is susceptible to defects. The 

existing works utilize network embedding techniques following a transductive paradigm. This study 

emphasizes the need to explore the performance of SDP techniques in the inductive paradigm, as they can 

more effectively capture the nature of software development. Furthermore, this study goes beyond the 

current state of knowledge to identify the challenges inherent in this domain. Recognizing the complexities 

and gaps in existing methodologies, the research aims to shed light on areas where further investigation is 

essential. By addressing the existing challenges and outlining avenues for future exploration, this work 

contributes not only to the understanding of embedding techniques usage in SDP but also serves as a 

roadmap for researchers seeking to enhance the effectiveness of defect prediction in software. 
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