Abstract
This paper investigated the transformation that quantum computing brought into algorithmic complexity in the theoretical setting of computer science. This involved the appearance of new paradigm changes brought forth by quantum technologies, imposing on a glance at the performance of quantum algorithms in respect to classical models of computation regarding their effectiveness. Our contributions encompassed key quantum algorithms, specifically Shor's and Grover's algorithms, underlining the performance metrics of those algorithms. The mathematical modeling was supported by simulations using python libraries like Qiskit, which helped analyze the complexities of both algorithm types. From our simulations, it emerged that for smaller sizes of input, classical algorithms executed faster and illustrated their established efficiency. In contrast, quantum computing-algorithms like Grover's and Shor's - performed so much better for larger input sizes, showing potential advantages that may change the face of computational limitations. While promising much, it seemed from our findings that quantum computing would not show a quantum advantage for all computational tasks, because classical algorithms still remained robust and effective for many scenarios. This nuanced understanding underlines how complementary both the classical and quantum approaches are. Therefore, the insights gained through this work provide the basis for investigating where boundaries of computational capabilities evolve and what practical implications are of the integration of quantum technologies into existing systems.
Keywords
- Quantum computing
- algorithm complexity
- Shor's algorithm
- Grover's algorithm
- classical algorithm
References
- 1. M. Moller, C. Vuik, âOn the impact of quantum computing technology on future developments in high-performance scientific computingâ, Ethics and Information Technology, vol. 19, pp. 253â269, Aug. 2017.
- 2. A. Holmes, S. Johri, G. Guerreschi, J. S. Clarke, and A. Y. Matsuura, âImpact of qubit connectivity on quantum algorithm performanceâ, Quantum Science and Technology, Mar. 2020.
- 3. J. R. Cruise, N. I. Gillespie, and B. Reid, âPractical Quantum Computing: The value of local computationâ, Cornell University, Sep. 2020.
- 4. J. Singh, K. S. Bhangu, âContemporary Quantum Computing Use Cases: Taxonomy, Review and Challengesâ, Archives of Computational Methods in Engineering, vol. 30, pp. 615â638, Sep. 2023.
- 5. W. S. Ming, âThe Role of Quantum Computing in Solving Complex Global Problemsâ, Hong Kong International Journal of Research Studies, vol. 1, no. 1, Dec. 2023.
- 6. S. Sharma, S. Solanki, and A. Yahya, Quantum Algorithms: Unleashing the Power of Quantum Computing, OORJA - International Journal of Management & IT, vol. 21, no. 1, p. 28, 2023.
- 7. P. N. Singh, S. Aarthi, âQuantum Circuits - An Application in Qiskit-Pythonâ, 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Mar. 2021.
- 8. D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, and others, âQiskit Backend Specifications for OpenQASM and OpenPulse Experimentsâ, Cornell University, Sep. 2018.
- 9. N. M. Linke, D. Maslov, M. Roetteler, and C. Monroe, âExperimental comparison of two quantum computing architecturesâ, National Academy of Sciences, vol. 114, no. 13, pp. 3305-3310. Feb. 2017.
- 10. C. H. Ugwuishiwu, U. E. Orji, C. I. Ugwu, and C. N. Asogwa, âAn overview of Quantum Cryptography and Shorâs Algorithmâ, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 748 -7495, Oct. 2020.
- 11. S. Fluhrer, âReassessing Grover's Algorithmâ, Cryptology ePrint Archive, Aug. 2017.
- 12. R. H. Preston, âApplying Grover's Algorithm to Hash Functions: A Software Perspectiveâ, IEEE Transactions on Quantum Engineering, vol. 3, Jan. 2023.
- 13. S. Pattanayak, âQuantum Machine Learning with Pythonâ, Apress, 2021.
- 14. N. Kanazawa, D. J. Egger, Y. Ben-Haim, H. Zhang, W. E. Shanks, G. Aleksandrowicz, and C. J. Wood, âQiskit Experiments: A Python package to characterize and calibrate quantum computersâ, The Journal of Open Source Software, Apr. 2023.
- 15. T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, âRealization of a scalable Shor algorithmâ, Science, vol. 351, no. 6277, pp. 1068-1070, Mar. 2016.
- 16. R. L. Singleton Jr, M. L. Rogers, and D. L. Ostby, âGrover's Algorithm with Diffusion and Amplitude Steeringâ, Cornell University, Oct. 2021.
- 17. A. Mandviwalla, K. Ohshiro, B. Ji, âImplementing Groverâs Algorithm on the IBM Quantum Computersâ, 2018 IEEE International Conference on Big Data, Dec. 2018.
- 18. A. Tulsi, âOn the class of diffusion operators for fast quantum searchâ, Cornell University, Oct. 2016.
- 19. A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R. Johnson, and J. M. Gambetta, âQuantum computing with Qiskitâ, Cornell University, Jun. 2024.
- 20. IBM Quantum Documentation, âCircuit libraryâ Angular, [Online]. Available: https://docs.quantum.ibm.com/guides/circuit-library. [Accessed: Jun. 21, 2024].
- 21. L. Burgholzer, R. Raymond, R. Wille, âVerifying Results of the IBM Qiskit Quantum Circuit Compilation Flowâ, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), Oct. 2020.
- 22. H. Y. Wong, âShorâs Algorithmâ, Introduction to Quantum Computing, pp. 289-298, Jun. 2023.
- 23. O. Dupouet, Y. Pitarch, M. Ferru, B. Bernela, âCommunity dynamics and knowledge production: forty years of research in quantum computingâ, Journal of Knowledge Management, vol. 28, no. 3, Mar. 2024.
- 24. R. Wille, R. V. Meter, Y. Naveh, âIBMâs Qiskit Tool Chain: Working with and Developing for Real Quantum Computersâ, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar. 2019.
- 25. V. Mavroeidis, K. Vishi, M. D. Zych, and A. Josang, âThe Impact of Quantum Computing on Present Cryptographyâ, International Journal of Advanced Computer Science and Applications (IJACSA), vol. 9, no. 3, pp. 405-414, Mar. 2018.
- 26. J. Liu, D. Franklin, âIntroduction to Quantum Computing for Everyone: Experience Reportâ, SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education, vol. 1, pp. 1157-1163, Mar. 2023.
- 27. A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, âQuantum algorithms: A survey of applications and end-to-end complexitiesâ, Cornell University, Oct. 2023.
- 28. D. Chawla, P. S. Mehra, âA Survey on Quantum Computing for Internet of Things Securityâ, Procedia Computer Science, vol. 218, pp. 2191-2200, 2023.
- 29. G. Guerreschi, M. Smelyanskiy, âPractical optimization for hybrid quantum-classical algorithmsâ, Cornell University, Jan. 2017.
- 30. C. T. Holter, P. Inglesant, M. Jirotka, âReading the road: challenges and opportunities on the path to responsible innovation in quantum computingâ, Technology Analysis & Strategic Management, vol. 35, no. 7, Sep. 2023.
- 31. J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, âThe theory of variational hybrid quantum-classical algorithmsâ, New Journal of Physics, vol. 18, Feb. 2016.