National Predictive Analytics Framework for Preventing Healthcare Fraud and Abuse
Downloads
Healthcare fraud and abuse remain critical challenges that undermine financial integrity and service delivery within health systems. This study developed a national predictive analytics framework to identify and prevent healthcare fraud using anomaly detection techniques. The analysis employed machine learning algorithms to evaluate claim patterns across different payer types and geographic regions. Results revealed that most healthcare claims exhibited normal behavioral patterns, while a small subset demonstrated significantly high anomaly scores, suggesting potential fraudulent activities. Commercial payers recorded the highest proportion of anomalies, followed by Medi-Cal, whereas Medicare showed the lowest frequency of irregular claims. Geographic analysis indicated that Los Angeles had the greatest concentration of anomalous records, highlighting a strong spatial clustering effect in high-volume urban regions. The correlation between Z-scores and anomaly scores confirmed the reliability of the model in detecting statistical deviations and behavioral inconsistencies. These findings emphasize the importance of integrating predictive analytics into healthcare oversight mechanisms to improve transparency, accountability, and operational efficiency. The study concludes that adopting data-driven fraud detection systems can significantly strengthen institutional capacity for proactive fraud prevention. Furthermore, the framework provides a scalable model that regulatory agencies and health insurers can adapt to monitor claim integrity, allocate resources efficiently, and sustain trust within the healthcare ecosystem.
Downloads
1. Abdullahi, R., Mansor, N., & Nuhu, M. S. (2015). Fraud Triangle Theory and Fraud Diamond Theory: Understanding the Convergent and Divergent for Future Research. European Journal of Business and Management, 7(28), 30-37.
2. Agarwal, S. (2023). An Intelligent Machine Learning Approach for Fraud Detection in Medical Claim Insurance: A Comprehensive Study. Scholars Journal of Engineering and Technology, 11(9), 191-200. doi:10.36347/sjet.2023.v11i09.003
3. Ahmadi, H., Granger, D. A., Hamilton, K. R., Blair, C., & Riis, J. L. (2021). Censored data considerations and analytical approaches for salivary bioscience data. Journal of Psychoneuroendocrinology, 129, 105274. doi:https://doi.org/10.1016/j.psyneuen.2021.105274
4. Arevalo, F., Barucca, P., Tellez-Leon, I. E., Rodriguez, W., Gage, G., & Morales, R. (2022). Identifying clusters of anomalous payments in the salvadorian payment system. Latin American Journal of Central Banking, 3(1), 100050. doi:https://doi.org/10.1016/j.latcb.2022.100050
5. Ayana, O., & Akinola, S. O. (2017). A multi-algorithm data mining classification approach for bank fraudulent transactions. African Journal of Mathematics and Computer Science Research, 10(1), 5-13. doi:https://doi.org/10.5897/AJMCSR2017.0686
6. Azad, T., & William, P. (2024). Fraud Detection in Healthcare Billing and Claims. International Journal of Science and Research Archive, 13(2), 3376-3395. doi:https://doi.org/10.30574/ijsra.2024.13.2.2606
7. Bairy, M., Muniyal, B., & Shetty. (2024). Enhancing healthcare data integrity: fraud detection using unsupervised learning techniques. International Journal of Computers and Applications, 46(11), 1006-1019. doi:https://doi.org/10.1080/1206212X.2024.2408262
8. Bello, O. A., Folorunsho, A., Ejiofor, O. E., Budale, F. Z., Adebayo, K., & Babatunde, O. A. (2024). Machine Learning Approaches for Enhancing Fraud Prevention in Financial Transactions. International Journal of Management Technology, 10(1), 85-108. doi:https://doi.org/10.37745/ijmt.2013/vol10n185108
9. Bokaba, T., Ndayizigamiye, P., Mhlongo, S., & Charles, E. (2024). Predictive Analytics for Fraud Detection in Healthcare.
10. Chaudhari, P., Koli, P., Mali, H., & Pawar, S. (2024). Medicare Fraud Detection using Machine Learning. Iconic Research and Engineering Journals, 7(11), 650-655.
11. Copeland, K. B. (2023). Healthcare Fraud and The Erosion of Trust. North Western University Law Review, 118(1), 89-114.
12. Dunbar, P., Keyes, L. M., & Browne, J. P. (2023). Determinants of regulatory compliance in health and social care services: A systematic review using the Consolidated Framework for Implementation Research. PLOS One, 18(4), e0278007. doi:https://doi.org/10.1371/journal.pone.0278007
13. Edemekong, P. F., Annamaraju, P., Afzal, M., & Haydei, M. J. (2024). Health Insurance Portability and Accountability Act (HIPAA) Compliance. Treasure Island. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK500019/
14. Ekin, T., Leva, F., Ruggeri, F., & Soyer, R. (2013). Application of Bayesian Methods in Detection of Healthcare Fraud. Chemical Engineering Transactions, 151-156.
15. Field, R. I. (2017). Regulation of health care in the United States: complexity, confrontation and compromise. An Inst Hig Med Trop, 16(1), 61-70.
16. Glynn, E. H. (2022). Corruption in the health sector: A problem in need of a systems-thinking approach. Frontiers in Public Health, 10, 3389. doi:https://doi.org/10.3389/fpubh.2022.910073
17. Goel, R. K. (2020). Medical professionals and health care fraud: Do they aid or check abuse? Managerial and Decision Economics, 41(4), 520-528. doi:https://doi.org/10.1002/mde.3117
18. Gostin, L. O., & Katz, R. (2016). The International Health Regulations: The Governing Framework for Global Health Security. The Milbank Quarterly, 94(2), 264-313. doi:https://doi.org/10.1111/1468-0009.12186
19. Hasan, M. N., Arman, M., Bhuyain, M. M., Chowdhury, F., & Bathula, M. K. (2025). Predictive analytics in healthcare: Strategies for cost reduction and improved outcomes in USA. International Journal of Innovative Research and Scientific Studies, 8(8), 142-150.
20. Haynes, K., Agiro, A., Chen, X., Stephenson, J. J., Eshete, B., Sutphen, R., . . . Young, K. (2020). Developing Methods to Link Patient Records across Data Sets That Preserve Patient Privacy. Patient-Centered Outcomes Research Institute.
21. Ikono, R., Iroju, O., Olaleke, J., & Oyegoke, T. (2019). A Meta-Analysis of Fraud, Waste and Abuse Detection Methods in Healthcare. Nigerian Journal of Technology, 38(2), 490-502. doi:http://dx.doi.org/10.4314/njt.v38i2.28
22. Iqbal, M. S., Abd-Alrazaq, A., & Househ, M. (2022). Artificial Intelligence Solutions to Detect Fraud in Healthcare Settings: A Scoping Review. Advances in Informatics, Management and Technology in Healthcare, 20-23. doi:https://doi.org/10.3233/SHTI220649
23. Johnson, J. M., & Khoshgoftaar, T. M. (2023). Data-Centric AI for Healthcare Fraud Detection. S N Computer Science, 4(4), 389. doi:https://doi.org/10.1007/s42979-023-01809-x
24. Joudaki, H., Rashidian, A., Minaei-Bidgoli, B., Mahmoodi, M., Geraili, B., Nasiri, M., & Arab, M. (2014). Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature. Global Journal of Health Science, 7(1), 194-202. doi:https://doi.org/10.5539/gjhs.v7n1p194
25. Kumaraswamy, N., Markey, M. K., Ekin, T., Barner, J. C., & Rascati, K. (2022). Healthcare Fraud Data Mining Methods: A Look Back and Look Ahead. Persepctives in Health Information Management, 19(1).
26. Leder-Luis, J., & Malani, A. (2025). The Economics of Healthcare Fraud. 1-43.
27. Lederman, L. (2021). The Fraud Triangle and Tax Evasion. Digital Repository @ Maurer Law, 1-56.
28. Mackey, T. K., Miyachi, K., Fung, D., Qian, S., & Short, J. (2020). Combating Health Care Fraud and Abuse: Conceptualization and Prototyping Study of a Blockchain Antifraud Framework. Journal Medical Internet Research, 22(9), e18623. doi:https://doi.org/10.2196/18623
29. Makandah, E. A., Aniebonam, E. E., Okpeseyi, S. B., & Waheed, O. O. (2025). AI-Driven Predictive Analytics for Fraud Detection in Healthcare: Developing a Proactive Approach to Identify and Prevent Fraudulent Activities. International Journal of Innovative Science and Research Technology, 10(1), 1521-1529. doi:https://doi.org/10.5281/zenodo.14769423
30. Marquart, J. W., & Thompson, R. A. (2024). Exploring relation fraud, murder,and the Fraud Triangle. Journal of Economic Criminology, 4, 100061. doi:https://doi.org/10.1016/j.jeconc.2024.100061
31. Massi, M. C., Ieva, F., & Lettieri, E. (2020). Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases. BMC Medical Informatics and Decision Making, 20, 160. doi:https://doi.org/10.1186/s12911-020-01143-9
32. Muhith, A., Wibowo, N. M., Widiastuti, Y., & Utari, W. (2019). Detection of Healthcare Fraud in The National Health Insurance Program Based on Cost Control. Advances in Economics, Business and Management Research, 103, 284-288. doi:https://doi.org/10.2991/TEAMS-19.2019.46
33. Munappy, A. R., Bosch, J., Olsson, H. H., Arpteg, A., & Brinne, B. (2022). Data management for production quality deep learning models: Challenges and solutions. Journal of Systems and Software, 191, 111359. doi:https://doi.org/10.1016/j.jss.2022.111359
34. Oikonomou, E., Carthey, J., Macrae, C., & Vincent, C. (2018). Patient safety regulation in the NHS: mapping the regulatory landscape of healthcare. Bio-medical Journal, e028663. doi:https://doi.org/10.1136/bmjopen-2018-028663
35. Omair, B., & Alturki, A. (2020). A Systematic Literature Review of Fraud Detection Metrics in Business Processes. IEEE Access, 1(1), 99. doi:https://doi.org/10.1109/ACCESS.2020.2971604
36. Parti, K. (2023). What is a capable guardian to older fraud victims? Comparison of younger and older victims’ characteristics of online fraud utilizing routine activity theory. Frontiers in Psychology, 14(1), 1118741. doi:https://doi.org/10.3389/fpsyg.2023.1118741
37. Pegu, N., Seth, S., Ramakrishnan, S., & Jangili. (2025). Healthcare Predictive Modeling for Identifying Fraud in Medical Insurance Claims. International Journal of Pharmaceutical Science, 3(2), 1734-1744. doi:https://doi.org/10.5281/zenodo.14899939
38. Preez, A. D., Bhattacharya, S., Beling, P., & Bowen, E. (2025). Fraud Detection in Healthcare Claims Using Machine Learning: A Systematic Review. Artificial Intelligence in Medicine, 160, 103061. doi:https://doi.org/10.1016/j.artmed.2024.103061
39. Samonas, S. (2013). Insider fraud and routine activity theory. LSE Research Online, 1-32.
40. Sayem, M. A., Taslima, N., Sidhu, G. S., & Ferry, J. W. (2024). A Quantitative Analysis of Healthcare Fraud and Utilization of AI for Mitigation. International Journal of Business and Management Sciences, 13-36. doi:https://doi.org/10.55640/ijbms-04-07-03
41. Schweppenstedde, D., Hinrichs, S., Ogbu, U., Schneider, E. C., Kringos, D. S., Klazinga, N. S., . . . Nolte, E. (2014). Regulating Quality and Safety of Health and Social Care. Rand Health Quarterly, 4(1), 1.
42. Settipalli, L., & Gangadharan, G. R. (2021). Healthcare fraud detection using primitive sub peer group analysis. Concurrency and Computation: Practice and Experience, 33(23), 62-75. doi:https://doi.org/10.1002/cpe.6275
43. Stowell, N. F., Pacini, C., Wadlinger, N., Crain, J. M., & Schmidt, M. (2020). Investigating Healthcare Fraud: Its Scope, Applicable Laws, and Regulations. William & Mary Businesss Law Review, 11(2), 1-50.
44. Sujeewa, G. M., Ab Yajid, M. S., Khatibi, A., Azam, S. M., & Dharmaratne, I. (2018). The New Fraud Triangle Theory: Integrating Ethical Values of Employees. International Journal of Business, Economics and Law, 16(5), 52-57.
45. Sumalatha, M. R., & Prabha, M. (2019). Mediclaim Fraud Detection and Management Using Predictive Analytics. International Conference on Computational Intelligence and Knowledge Economy. doi:https://doi.org/10.1109/ICCIKE47802.2019.9004241
46. Szewczyk, T., Sinha, M. S., Gerling, J., Zhang, J. K., Mercier, P., & Mattei, T. A. (2024). Health Care Fraud and Abuse: Lessons From One of the Largest Scandals of the 21st Century in the Field of Spine Surgery. Annals of Surgery Open, 5(2), e452. doi:https://doi.org/10.1097/AS9.0000000000000452
47. Thaifur, A. Y., Maidin, M. A., Sidin, I. A., & Razak, A. (2021). How to detect healthcare fraud? “A systematic review”. Gaceta Sanitaria, 35(2), 441-449. doi:https://doi.org/10.1016/j.gaceta.2021.07.022
48. Thomas, S. S., & Sheshassayee, A. (2017). Influence of Predictive Analysis in Helath Insurance Fraud Detection. International Journal of Engineering Applied Sciences and Technology, 2(7), 25-27.
49. Tickner, P., & Button, M. (2021). Deconstructing the Origins of Cressey’s Fraud Triangle. Journal of Financial Crime, 1-12.
50. Xiao, F., Li, H. X., Wang, X. K., & Wang, J. (2025). Predictive analysis for healthcare fraud detection: Integration of probabilistic model and interpretable machine learning. Journal of Information Science, 12(24). doi:https://doi.org/10.1016/j.ins.2025.122499
Copyright (c) 2025 Abdul-Waliyyu Bello, Aishat Ojikutu

This work is licensed under a Creative Commons Attribution 4.0 International License.