Abstract
This paper examines the pricing disparity between green and conventional bonds (the greenium), drawing on empirical research findings that have yielded mixed re- sults. We introduce a mathematical model to elucidate the conditions under which green bonds may be priced differently from their conventional counterparts. Un- like previous studies primarily focused on firm-level characteristics, our model incor- porates investors’ prosocial attitudes, income levels, and risk preferences to derive market prices for green bonds. By considering both supply and demand dynamics, we pioneer an equilibrium-based approach to pricing, departing from the assump- tions of traditional models like CAPM and Black-Scholes. Additionally, we integrate regulatory risk into our analysis, introducing the concept of ”green default” along- side pecuniary default. Our findings underscore the influence of investors’ prosocial preferences, issuer environmental commitments, and issuance costs on the greenium. Moreover, stringent environmental policies and advancements in green technology mitigate the likelihood of green default, thereby bolstering market demand for green bonds. While climate risk exerts downward pressure on bond prices overall, its im- pact on the greenium varies based on the relative reduction in the equilibrium price of green bonds compared to conventional bonds.
Keywords
- Investment
- green bond
- conventional bond utility
- optimization
- risk aversion
- environmental regulation
- green default
References
- Abdellaoui, M., & Wakker, P. P. (2005). The likelihood method for decision under uncertainty. Theory and Decision, 58 . doi: 10.1007/s11238-005-8320-4
- Aimin, H. (2010). Uncertainty, risk aversion and risk management in agriculture.
- Agriculture and Agricultural Science Procedia, 1 . doi: 10.1016/j.aaspro.2010
- .09.018
- Akter, S., Krupnik, T. J., & Khanam, F. (2017). Climate change skepticism and index versus standard crop insurance demand in coastal bangladesh. Regional Environmental Change, 17 . doi: 10.1007/s10113-017-1174-9
- Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole americaine. Econometrica, 21 . doi: 10.2307/ 1907921
- Aref, S., & Wander, M. M. (1997). Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the morrow plots. Advances in Agronomy, 62 . doi: 10.1016/S0065-2113(08)60568-4
- Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9 . doi: 10.1111/1467-9965.00068
- Babcock, B. A. (2015). Using cumulative prospect theory to explain anomalous crop insurance coverage choice (Vol. 97). doi: 10.1093/ajae/aav032
- Baillon, A., Bleichrodt, H., Keskin, U., & ... (2013). Learning under ambiguity: An experiment using initial public offerings on a stock market.
- Baillon, A., Liu, N., & van Dolder, D. (2017). Comparing uncertainty aversion towards different sources. Theory and Decision, 83 . doi: 10.1007/s11238-016-9584-6
- Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assessment (Vol. 27). doi: 10.1257/jep.27.1.173
- Bard, S. K., & Barry, P. J. (2001). Assessing farmers’ attitudes toward risk using the ”closing-in” method. Journal of Agricultural and Resource Economics, 26 .
- Batchelor, W. D., Basso, B., & Paz, J. O. (2002). Examples of strategies to analyze spatial and temporal yield variability using crop models. In (Vol. 18). doi: 10.1016/S1161-0301(02)00101-6
- Ben-Tal, A., & Hochman, E. (1985). Approximation of expected returns and op- timal decisions under uncertainty using mean and mean absolute deviation. Zeitschrift fu¨r Operations Research, 29 . doi: 10.1007/BF01918761
- Ben-Tal, A., & Teboulle, M. (1986). Expected utility, penalty functions, and duality in stochastic nonlinear programming. Management Science, 32 . doi: 10.1287/ mnsc.32.11.1445
- Bert, F. E., Laciana, C. E., Podest´a, G. P., Satorre, E. H., & Men´endez, A. N. (2007). Sensitivity of ceres-maize simulated yields to uncertainty in soil properties and daily solar radiation. Agricultural Systems, 94 . doi: 10.1016/j.agsy.2006.08
- .003
- Boyer, C. N., Larson, J. A., Roberts, R. K., McClure, A. T., Tyler, D. D., & Zhou,
- V. (2013). Stochastic corn yield response functions to nitrogen for corn after corn, corn after cotton, and corn after soybeans. Journal of Agricultural and Applied Economics, 45 . doi: 10.1017/s1074070800005198
- Bullock, D. G., & Bullock, D. S. (1994). Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: A comparison. Agronomy Journal,
- 86 . doi: 10.2134/agronj1994.00021962008600010033x
- Cabas, J. H., Leiva, A. J., & Weersink, A. (2008). Modeling exit and entry of farmers in a crop insurance program. In (Vol. 37). doi: 10.1017/S1068280500002173
- Cameron, T. A., & Quiggin, J. (1994). Estimation using contingent valuation data from a dichotomous choice with follow-up questionnaire. Journal of Environ- mental Economics and Management, 27 . doi: 10.1006/jeem.1994.1035
- Cao, R., Carpentier, A., & Gohin, A. (2011). Measuring farmers’ risk aversion: the unknown properties of the value function. 2011 International Congress, . . . .
- Cerrato, M. E., & Blackmer, A. M. (1990). Comparison of models for describing; corn yield response to nitrogen fertilizer. Agronomy Journal, 82 . doi: 10.2134/ agronj1990.00021962008200010030x
- Chambers, R. G., Chung, Y., & Fa¨re, R. (1996). Benefit and distance functions.
- Journal of Economic Theory, 70 . doi: 10.1006/jeth.1996.0096
- Chung, Y. H., F¨are, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51 . doi: 10.1006/jema.1997.0146
- Coble, K. H., Knight, T. O., Patrick, G. F., & Baquet, A. E. (2002). Understanding the economic factors influencing farm policy preferences. Review of Agricultural Economics, 24 . doi: 10.1111/1467-9353.00021
- Dalhaus, T., Barnett, B. J., & Finger, R. (2020). Behavioral weather insurance: Applying cumulative prospect theory to agricultural insurance design under narrow framing. PLoS ONE , 15 . doi: 10.1371/journal.pone.0232267
- Dinar, A., & Yaron, D. (1992). Adoption and abandonment of irrigation technologies.
- Agricultural Economics, 6 . doi: 10.1016/0169-5150(92)90008-M
- Dogan, E., Copur, O., Kahraman, A., Kirnak, H., & Guldur, M. E. (2011). Sup- plemental irrigation effect on canola yield components under semiarid climatic conditions. Agricultural Water Management, 98 . doi: 10.1016/j.agwat.2011.04
- .006
- Dowling, J. A., Rinaldi, K. Z., Ruggles, T. H., Davis, S. J., Yuan, M., Tong, F., . . . Caldeira, K. (2020). Role of long-duration energy storage in variable renewable electricity systems. Joule, 4 . doi: 10.1016/j.joule.2020.07.007
- Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics, 75 . doi: 10.2307/1884324
- Eurosif. (2018, 6). Eurosif 2018 sri study. Retrieved from https://
- www.eurosif.org/wp-content/uploads/2022/06/Eurosif-Report-June
- -22-SFDR-Policy-Recommendations.pdf
- Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: a survey. Economic Development Cultural Change,
- 33 . doi: 10.1086/451461
- Fern´andez, C., Koop, G., & Steel, M. F. (2002). Multiple-output production with undesirable outputs: An application to nitrogen surplus in agriculture. Journal of the American Statistical Association, 97 . doi: 10.1198/016214502760046989
- Fersund, F. R. (2009). Good modelling of bad outputs: Pollution and multiple-output production. International Review of Environmental and Resource Economics,
- 3 . doi: 10.1561/101.00000021
- Flaten, O., Lien, G., Koesling, M., Valle, P. S., & Ebbesvik, M. (2005). Compar- ing risk perceptions and risk management in organic and conventional dairy farming: Empirical results from norway. Livestock Production Science, 95 . doi: 10.1016/j.livprodsci.2004.10.014
- Foster, A. D., & Rosenzweig, M. R. (1995). Learning by doing and learning from others: human capital and technical change in agriculture. Journal of Political Economy, 103 . doi: 10.1086/601447
- Foster, A. D., & Rosenzweig, M. R. (2010). Microeconomics of technology adop- tion. Annual Review of Economics, 2 . doi: 10.1146/annurev.economics.102308
- .124433
- Foudi, S., & Erdlenbruch, K. (2012). The role of irrigation in farmers’ risk manage- ment strategies in france (Vol. 39). doi: 10.1093/erae/jbr024
- Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk.
- Journal of Political Economy, 56 . doi: 10.1086/256692
- Frittelli, M., & Gianin, E. R. (2002). Putting order in risk measures. Journal of Banking and Finance, 26 . doi: 10.1016/S0378-4266(02)00270-4
- Fuentes-Arderiu, X., & Dot-Bach, D. (2009). Measurement uncertainty in manual differential leukocyte counting. Clinical Chemistry and Laboratory Medicine,
- 47 . doi: 10.1515/CCLM.2009.014
- Fa¨re, R., Grosskopf, S., Noh, D. W., & Weber, W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126 . doi: 10.1016/j.jeconom.2004.05.010
- Fa¨re, R., Grosskopf, S., & Weber, W. L. (2006). Shadow prices and pollution costs in
- u.s. agriculture. Ecological Economics, 56 . doi: 10.1016/j.ecolecon.2004.12.022 Fo¨llmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints.
- Finance and Stochastics, 6 . doi: 10.1007/s007800200072
- Goodwin, B. K. (1993). An empirical analysis of the demand for multiple peril crop insurance. American Journal of Agricultural Economics, 75 . doi: 10.2307/ 1242927
- Han, X., Zhang, G., Xie, Y., Yin, J., Zhou, H., Yang, Y., . . . Bai, W. (2019).
- Weather index insurance for wind energy. Global Energy Interconnection, 2 . doi: 10.1016/j.gloei.2020.01.008
- Hasenkamp, G. (1976). A study of multiple-output production functions. klein’s rail- road study revisited. Journal of Econometrics, 4 . doi: 10.1016/0304-4076(76) 90036-1
- Hayhoe, K., Wuebbles, D., Easterling, D., Fahey, D., Doherty, S., Kossin, J., . . . Wehner, M. (2018). Our changing climate. in impacts, risks, and adaptation in the united states: Fourth national climate assessment, volume ii. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assess- ment, Volume II , II .
- Heath, C., & Tversky, A. (1991). Preference and belief: Ambiguity and competence in choice under uncertainty. Journal of Risk and Uncertainty, 4 . doi: 10.1007/ BF00057884
- Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15 . doi: 10.1111/j.0956-7976.2004.00715.x
- Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T., & Platt, M. L. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49 . doi: 10.1016/j.neuron.2006.01.024
- Ipcc. (2013). Working group i contribution to the ipcc fifth assessment report, climate change 2013: The physical science basis. Ipcc, AR5 .
- Ipcc. (2022). Ar6 synthesis report outline: Climate change 2022. Re-
- trieved from https://www.ipcc.ch/site/assets/uploads/2021/12/IPCC
- -52 decisions-adopted-by-the-Panel.pdf
- Iyer, P., Bozzola, M., Hirsch, S., Meraner, M., & Finger, R. (2020). Measuring farmer risk preferences in europe: A systematic review. Journal of Agricultural Economics, 71 . doi: 10.1111/1477-9552.12325
- Kahn, B. E., & Sarin, R. K. (1988). Modeling ambiguity in decisions under uncer- tainty. Journal of Consumer Research, 15 . doi: 10.1086/209163
- Kahneman, D., & Tversky, A. (1979). Kahneman tversky (1979) - prospect theory - an analysis of decision under risk.pdf (Vol. 47).
- Kessler, R. (2021, 3). Texas wind farms face billion-dollar losses from blackouts in ’illegal wealth transfer’. Retrieved from https://www.windaction.org/posts/ 52234
- Kilka, M., & Weber, M. (2001). What determines the shape of the probability weighting function under uncertainty? Management Science, 47 . doi: 10.1287/ mnsc.47.12.1712.10239
- Knight, F. H. (1921). Risk uncertainty and profit knight (Vol. 36).
- Kooperman, Chen, Hoffman, Koven, Lindsay, Pritchard, . . . Randerson (2018). Forest response to rising co2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change. doi: https://doi.org/10.1038/s41558-018-0144-7
- Koundouri, P., Nauges, C., & Tzouvelekas, V. (2006). Technology adoption under pro- duction uncertainty: Theory and application to irrigation technology. American Journal of Agricultural Economics, 88 . doi: 10.1111/j.1467-8276.2006.00886.x
- Kumbhakar, S. C. (2002). Specification and estimation of production risk, risk pref- erences and technical efficiency. American Journal of Agricultural Economics,
- 84 . doi: 10.1111/1467-8276.00239
- Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. doi: 10.1017/cbo9781139174411
- Kweilin Ellingrud, B. Q., Alex Kimura, & Ralph, J. (2022). Five steps to improve in- novation in the insurance industry. McKinsey & Co. Retrieved from https:// www.mckinsey.com/industries/financial-services/our-insights/
- five-steps-to-improve-innovation-in-the-insurance-industry
- Laeven, R. J., & Stadje, M. (2014). Robust portfolio choice and indifference valuation.
- Mathematics of Operations Research, 39 . doi: 10.1287/moor.2014.0646
- Lee, D. (2005). Agricultural sustainability and technology adoption: Issues and policies for developing countries. American Journal of Agricultural Economics,
- 87 . doi: 10.1111/j.1467-8276.2005.00826.x
- Lempert, R., Popper, S., & Bankes, S. (2019). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. doi: 10.7249/mr1626
- Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neu- ral representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103 . doi: 10.1152/jn.00853.2009
- Link, J., Graeff, S., Batchelor, W. D., & Claupein, W. (2006). Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogen management. Agricultural Sys- tems, 91 . doi: 10.1016/j.agsy.2006.02.003
- Llewelyn, R. V., & Featherstone, A. M. (1997). A comparison of crop production functions using simulated data for irrigated corn in western kansas. Agricultural Systems, 54 . doi: 10.1016/S0308-521X(96)00080-7
- Lyu, K., & Barr´e, T. J. (2017). Risk aversion in crop insurance program purchase decisions evidence from maize production areas in china. China Agricultural Economic Review, 9 . doi: 10.1108/CAER-04-2015-0036
- Maharjan, B., Das, S., Nielsen, R., & Hergert, G. W. (2021). Maize yields from manure and mineral fertilizers in the 100-year-old knorr–holden plot. Agronomy Journal, 113 . doi: 10.1002/agj2.20713
- Mahul, O. (2002). Hedging in futures and options markets with basis risk (Vol. 22).
- doi: 10.1002/fut.2207
- Miao, Y., Mulla, D. J., Batchelor, W. D., Paz, J. O., Robert, P. C., & Wiebers,
- M. (2006). Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98 . doi: 10.2134/agronj2005.0153
- Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64 . doi: 10.1016/j.jeem.2012.02.005
- of Sciences, N. A., Council, N. R., of Mathematical, A., & Sciences, P. (1979). Carbon dioxide and climate: a scientific assessment. Re- trieved from https://nap.nationalacademies.org/catalog/12181/carbon
- -dioxide-and-climate-a-scientific-assessment
- Paz, J. O., Batchelor, W. D., Babcock, B. A., Colvin, T. S., Logsdon, S. D., Kaspar,
- T. C., & Karlen, D. L. (1999). Model-based technique to determine variable rate nitrogen for corn. Agricultural Systems, 61 . doi: 10.1016/S0308-521X(99) 00035-9
- Piet, L., & Bougherara, D. (2016, 3). The impact of farmers’ risk preferences on the design of an individual yield crop insurance. WORKING PAPER SMART, INARE UMR SMART .
- Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty (Vol. 11). doi: 10.1038/nn2062
- Pope, R. D. (1982). Expected profit, price change, and risk aversion. American Journal of Agricultural Economics, 64 . doi: 10.2307/1240655
- Program, U. G. C. R. (2018). Climate science special report: Fourth national climate assessment, volume i (Vol. 1). doi: 10.7930/J0J964J6
- Puntel, L. A., Sawyer, J. E., Barker, D. W., Dietzel, R., Poffenbarger, H., Castellano,
- M. J., . . . Archontoulis, S. V. (2016). Modeling long-term corn yield response to nitrogen rate and crop rotation. Frontiers in Plant Science, 7 . doi: 10.3389/ fpls.2016.01630
- Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3 . doi: 10.1016/0167-2681(82)90008-7
- Raiffa, H. (1993). Decision analysis: introductory lectures on choices under un- certainty. 1968. M.D. computing : computers in medical practice, 10 . doi: 10.2307/2987280
- Ruszczy’ski, A. (2006, 8). Stochastic programming. John Wiley Sons, Inc. doi: 10.1002/0471667196.ess3225
- Schahczenski, J. (2021, 9). Crop insurance rules challenge organic and sustainable farming practices. Retrieved from https://sustainableagriculture.net/ blog/crop-insurance-rules-challenge-organic-and-sustainable
- -farming-practices
- Schnitkey, G., Batts, R., Swanson, K., Paulson, N., & Zulauf, C. (2021). Crop insurance tools. Farmdoc.
- Schultz, W., Preuschoff, K., Camerer, C., Hsu, M., Fiorillo, C. D., Tobler, P. N., & Bossaerts, P. (2008). Review. explicit neural signals reflecting reward uncer- tainty (Vol. 363). doi: 10.1098/rstb.2008.0152
- Scofield, C. (1927). Irrigated crop rotations in western nebraska. United States Department of Agriculture, Technical Bulletin, 02 .
- Shapiro, A., Tekaya, W., Soares, M. P., & Costa, J. P. D. (2013). Worst-case- expectation approach to optimization under uncertainty. Operations Research,
- 61 . doi: 10.1287/opre.2013.1229
- Shephard, R. W. (1970). Theory of cost and production functions. doi: 10.2307/ 2230285
- Sherrick, B. J., Zanini, F. C., Schnitkey, G. D., & Irwin, S. H. (2004). Crop in- surance valuation under alternative yield distributions. American Journal of Agricultural Economics, 86 . doi: 10.1111/j.0092-5853.2004.00587.x
- Smith, V. H., & Baquet, A. E. (1996). The demand for multiple peril crop insur- ance: Evidence from montana wheat farms. American Journal of Agricultural Economics, 78 . doi: 10.2307/1243790
- Steiger, R., Damm, A., Prettenthaler, F., & Pro¨bstl-Haider, U. (2021). Climate change and winter outdoor activities in austria. Journal of Outdoor Recreation and Tourism, 34 . doi: 10.1016/j.jort.2020.100330
- Strupczewski, G. (2019). What characterizes farmers who purchase crop insurance in poland? Problems of Agricultural Economics, 1 . doi: 10.30858/zer/103596
- Sulewski, P., & K-loczko-Gajewska, A. (2014). Farmers’ risk perception, risk aversion and strategies to cope with production risk: An empirical study from poland. Studies in Agricultural Economics, 116 . doi: 10.7896/j.1414
- Thorp, K. R., DeJonge, K. C., Kaleita, A. L., Batchelor, W. D., & Paz, J. O. (2008). Methodology for the use of dssat models for precision agriculture de- cision support. Computers and Electronics in Agriculture, 64 . doi: 10.1016/ j.compag.2008.05.022
- Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 . doi: 10.1007/ BF00122574
- Ullah, R., Shivakoti, G. P., & Ali, G. (2015). Factors effecting farmers’ risk attitude and risk perceptions: The case of khyber pakhtunkhwa, pakistan. International Journal of Disaster Risk Reduction, 13 . doi: 10.1016/j.ijdrr.2015.05.005
- Vajda, S., Luce, R. D., & Raiffa, H. (1958). Games and decisions: Introduction and critical survey. Journal of the Royal Statistical Society. Series A (General),
- 121 . doi: 10.2307/2342906
- Valone.T. (2021). Linear global temperature correlation to carbon dioxide level, sea level, and innovative solutions to a projected 6°c warming by 2100. Journal of
- Geoscience and Environment Protection. Retrieved from https://www.scirp
- .org/journal/paperinformation.aspx?paperid=107789
- Vollmer, E., Hermann, D., & Mußhoff, O. (2017). Is the risk attitude measured with the holt and laury task reflected in farmers’ production risk? European Review of Agricultural Economics, 44 . doi: 10.1093/erae/jbx004
- Weaver, R. (1977). The theory and measurement of provisional agricultural production decisions .
- Weaver, R. D. (1996). Prosocial behavior: Private contributions to agriculture’s impact on the environment. Land Economics, 72 . doi: 10.2307/3146968
- Weber, E. U. (1994). From subjective probabilities to decision weights: The effect of asymmetric loss functions on the evaluation of uncertain outcomes and events. Psychological Bulletin, 115 . doi: 10.1037//0033-2909.115.2.228
- Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55 . doi:
- 10.2307/1911158
- Yilmaz, H., Merkez, M., & Unlu, N. (2017). An empirical analysis on the determinants of government-subsidised crop insurance purchase in grape production in turkey. Erwerbs-Obstbau, 59 . doi: 10.1007/s10341-016-0297-3